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Our Contributions

Repair LANDSAT 7 imagery with Convolutional Neural Processes

State-of-the-art inpainting performance on in-distribution and especially
out-of-distribution (OOD) inpainting

Strong performance with synthetic downstream regression tasks



Satellite Imagery: LANDSAT 7

e LANDSAT 7 - images collected by NASA/USGS via the
LANDSAT programme

e High-resolution (30m) images publicly available
(massive, terabytes!)

e Scanline corrector (SLC) failure on 31st May 2003
> missing values at scanlines

Figure 1: Snapshot in Kenya. Taken on 3rd January, 2005, after the
SLC failure



Data from Google Earth Engine

e LANDSAT 7 Satellite images extracted using Google Earth Engine APl (Gorelick et al. 2017)
64

e RGB channels/bands
e 256x256 images downloaded
e Cropped to 128x128 and 64x64 for training
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Data Processing for Training

e Post-2003 images used to extract
scanline bitmasks

e Pre-2003 uncorrupted images used
for training

Pre-2003 image - Kenya

= Extract scanline from post-2003 images
= Apply scanline mask to pre-2003 images for training



Baselines: Previous Attempts

Classical approaches:

e Interpolation & PDEs (Bertalmio et al. 2001; Richard and Chang 2001; Telea 2004) - deterministic
e Official LANDSAT 7 inpainting (Scaramuzza & Barsi 2005)- linear regression via clean and corrupt
image matching

Deep learning:

U-Net (Ronneberger et al. 2015)

GANs (Pathak et al. 2016)

Partial Convolutions (PartialConv; Liu et al. 2018)

HI-VAE (Nazabal et al. 2020)

Recently: Convolutional Neural Processes (ConvNPs; Foong et al. 2020; Markou et al. 2022),
denoising diffusion probabilistic models (Lugmayr et al. 2022)
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Prediction Prediction

Navier-Stokes (NS)

e Bad at borders between different
colors (clouds - land, sea - land)
e Scanlines generally noticeable

Original




U-Net

e Learns global function
e In-distribution Kenya does well
e Poor out-of-distribution predictions

Corrupted

U-Net

Original




Partial Convolutions (PartialConv)

U-Net-like architecture

Partial convolutional - mask-aware  Corrupted
Blurry in general and scanlines also
generally visible

PartialConv

Original
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Baselines: Comparison

Navier-Stokes

Fast

No information sharing between images

U-Net

Expressive and works quite well for a lot of problems
OOD requires large datasets and data augmentation

PartialConv

Convolution takes into account of masks/missing pixels

Requires large datasets and long training times
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Supervised Learning

Single dataset (context)
= {(=19,y)}L
Learns predictor

f(z)

Predict target points

f(x7)

Modeling Functions

Modeling Stochastic Processes

Train

Test

Cr f(z)

Support Vector Machines, Neural Nets, ...

Further reading: https://yanndubs.github.io/Neural-Process-Family

C— p(y|z)
* —>
- (YT|XT)
2 . . *-
' ‘. . *

Gaussian Processes, Bayesian Neural Nets,...
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Meta Learning
e “Learningto learn” - Adapt to new supervised tasks

e Collection of datasets/tasks (Meta-dataset)

Task 2

— Ntasks
M = {Di}izl )
£ Task 1 :
e Learns mapping g ‘
g.
C— f(z;C)
e Adapt predictor to new € f(=;0)
context set ;
L —
f(z; C) :

Further reading: https://yanndubs.github.io/Neural-Process-Family

Task3 **

Task 4

¢ plylasC)

Neural Processes
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Satellite inpainting ==y Meta-Learning problem

2 . . :
T € R Pixel location on grid

y c RS RGB pixel value

Contextset (x¢, yc) = {4, i } G
Target Set (xTa yT) = {fu gz}z]iTl

Task D:={C, T} where (= {zc,yc}
T ={xr,yr}

Task is 2D function
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(..'..'.z; Supervised approach

e Learn global function f@ that predicts Y1 ~ fe (CUT)
e Implicitly distinguish between different tasks

f@(xcm7 yCm? :ETm) ~ fem (:CTm)
@ Meta-learning approach
e Objective function EmNM [E(Dn (Eg <517Cm 3 yCm)) (me ) y yT)]

b _
e

f@m (ZETm) where 6 = (n,f)

° ES encodes context (370; yc) to task-specific representation
° Dndecodes representation and target location to output
o /[ istheloss
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Neural Processes for Inpainting

e Satellite images are different regression problems
o Different location and time
e Small dataset for each task

Context points are
non-scanline pixels

O

Encg—>

N
Decg

Target points are entire
image (for continuity)
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Convolutional Neural Processes

Translational equivariance

Convolutional Conditional Neural Processes
Convolutional Latent Neural Processes

Trained using Maximum Likelihood
Multi-Scale Structural Similarity (MS-SSIM) Loss
(Wang et al. 2003) generates sharper images

—

[Mc , Zc]

ConvCNP

ConvLNP

B

wl

R(xT)

=

Z(xT)

=

MS-SSIM
Target set «>

KL Ground truth (origina

Encoder

Representation

Query (all locations of
target image XT)

Decoder

1 clean image)
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From

Multi-Scale Structural Similarity (Wang et al. 2003)

e In practice, calculated on windows between 2

images - convolution with Gaussian kernel U(x,y) = _22% u%+ Ci ,
e Then average SSIM over windows ’;’ N ””:gl
. _ Oz Oy 2
e Spatial structure-aware c(x,y) = Bttt O o2 +Cs’
Ozy + C3
s(an) = _—L—__’
(,Uwa Uw) (Nya O'y) 0z 0y + C3

Structural Similarity (SSIM):
SSIM(x,y) = [1(x,¥)]* - [e(x,¥)]” - [s(x, ¥)]"

Multi-Scale Structural Similarity (MS-SSIM):

SSIM(x, y) = [tar (o ¥)1™ - ] Jles (e, )1 [ e, 3]

j=1

https://github.com/VainF/pytorch-msssim; See https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b45554 1e for a deeper explanation
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Experiments: Data Collection and Training

O NP models from Github implementation by Yann Dubois (Dubois et al. 2020).
e Models trained on Kenya
e Kenya model used for inference on all countries
e Each country has dataset of 1000 images
e 5-fold cross validation with 80:20 split

Fold 1 | Fold 2 Fold 3 Fold 4 Fold 5

[ ] Train
] Test
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Experiment 1: Setup

ConvCNP

ConvLNP
64x64

ConvLNP
128x128

5%

10-layer ResNet encoder
128 channel representation
4-layer MLP in decoder

8-layer ResNet encoder
Latent samples:

m 16 fortraining
m 32forinference

8-layer ResNet encoder
Latent samples:

m 4fortraining

m 8forinference

o O O O

[

400 epochs

Batch size 8

Learning rate le-4
Exponential decay by factor 5

200 epochs
Batch size 4
Learning rate 5e-4
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Inpainting results
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Experiment 2:
Synthetic Downstream Task

e Performance of inpainted results on
downstream regression task

e Only 64x64 images

e C(leanimage and corrupted image
(with scanline) also used for
downstream task as reference

Step 1: Generate Synthetic Dataset

el +

- ( Inpainting

L > Algorithm
Apply random L e.g. ConvCNP

scanline mask

Original Images

Single forward pass

Y
—

Fixed Reference
CNN

—
Synthetic Dataset

y

[0.1 04|02|--- ]0.3]

"Ground Truth" Labels Cleaned (inpainted) images

Step 2: Train CNN
using inpainted
images
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Downstream task setup

o

o

CNN

m 2 convolutional layers

m Kernelsize3

m Finalfully connected layer
MSE loss

[

300 epochs

Batch size 8

Learning rate 1e-3 with reduction on
plateau

Early stopping with patience 8 epochs
5-fold cross validation
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Downstream Task Results

e Violin plot shows variation in MAPE *°

over 5 folds of cross-validation 175
e ConvLNP performs best 15.0
e U-Net performs badly e

out-of-distribution s

10.0
e Navier-Stokes

o  Onlyscanline changes B

u

e Norway is a difficult task 5.0
e Notagood measure of PartialConv ;5
performance

Model
I Clean image
[ Scanline applied
@3 ConvLNP
I ConvCNP
I U-Net
Il Navier-Stokes
3 Partial Convolution

o‘o“v‘ M 3‘“‘“ W‘“

Kenya Norway UK Brazil Nepal
Country
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Navier-Stokes Results

Norway

Corrupted

Inpainting patches of larger image

Navier-Stokes

Original
Corrupted Navier-Stokes
Inpainted

25



PartialConv Results

Corrupted

PartialConv

Original

Corrupted

PartialConv




U-Net Results

Corrupted

U-Net

Original

Norway

Corrupted

U-Net Inpainted
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ConvNP Inpainted Results

Kenya Nepal Norway

Corrupted

Corrupted

ConvCNP

ConvLNP

ConvCNP ConvLNP
Inpainted Inpainted

Original
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Conclusion and Discussion

ConvNPs successful at inpainting in-distribution and out-of-distribution
Take advantage of different spatiotemporal structure of satellite images

Global inpainter for LANDSAT 7 by only training small subset of locations

Bigger scanlines

Cloud removal

OO

More interesting downstream tasks
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Potential Downstream Applications

Housing/Macroeconomic Mapping:

Inputs: Imputed Landsat 7 maps
Model: CNN/Transformers/GNN
Outputs: Housing inequality index, or
potentially multivariate outputs

Malaria Prevalence Mapping:

Inputs: Pixels of Landsat 7 maps inside
regions of interest

Model: DeepSets, Set Transformer, Gaussian
processes over distributions

Outputs: Malaria cases

Irregular/set/distribution
data > DeepSets/Set
Transformer/Gaussian
processes over distributions

Housing Inequality Index

flz)

N\

or Malaria cases

Image data >
CNN/Transformers/G
NN
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Thank you!

Our paper: https://arxiv.org/pdf/2205.12407.pdf

Any questions? ..ﬂ
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