

Convolutional Neural Processes for Inpainting Satellite Images

Alexander Pondaven, Hamzah Hashim Imperial College London

Alexander Pondaven*

Märt Bakler*

MSc Artificial Intelligence

Donghu Guo

MEng Electronic and Information Engineering

MSc Environmental Data Science and Machine Learning

Hamzah Hashim

MSci Theoretical Physics

Martin Ignatov

MSci Physics

Harrison Zhu

PhD Modern Statistics and Statistical Machine Learning

Our Contributions

- Repair LANDSAT 7 imagery with **Convolutional Neural Processes**
- State-of-the-art inpainting performance on in-distribution and **especially** out-of-distribution (OOD) inpainting
- Strong performance with synthetic **downstream regression** tasks

Satellite Imagery: LANDSAT 7

- LANDSAT 7 images collected by NASA/USGS via the LANDSAT programme
- High-resolution (30m) images publicly available (massive, terabytes!)
- Scanline corrector (SLC) failure on 31st May 2003
 → missing values at scanlines

Figure 1: Snapshot in Kenya. Taken on 3rd January, 2005, after the SLC failure

Data from Google Earth Engine

- LANDSAT 7 Satellite images extracted using Google Earth Engine API (Gorelick et al. 2017)
- RGB channels/bands
- 256x256 images downloaded
- Cropped to 128x128 and 64x64 for training

In-distribution country

- Kenya
- Out-of-distribution countries

Data Processing for Training

- Post-2003 images used to extract scanline bitmasks
- Pre-2003 uncorrupted images used for training

Pre-2003 image - Kenya

Extract scanline from post-2003 images
 Apply scanline mask to pre-2003 images for training

Baselines: Previous Attempts

Classical approaches:

- Interpolation & PDEs (Bertalmio et al. 2001; Richard and Chang 2001; Telea 2004) deterministic
- Official LANDSAT 7 inpainting (Scaramuzza & Barsi 2005)- linear regression via clean and corrupt image matching

Deep learning:

- **U-Net** (Ronneberger et al. 2015)
- GANs (Pathak et al. 2016)
- Partial Convolutions (PartialConv; Liu et al. 2018)
- HI-VAE (Nazabal et al. 2020)
- Recently: Convolutional Neural Processes (**ConvNPs**; Foong et al. 2020; Markou et al. 2022), denoising diffusion probabilistic models (Lugmayr et al. 2022)

Navier-Stokes (NS)

- Bad at borders between different colors (clouds land, sea land)
- Scanlines generally noticeable

U-Net

• Learns global function

Corrupted

- In-distribution Kenya does well
- Poor out-of-distribution predictions

U-Net

Original

Partial Convolutions (PartialConv)

- U-Net-like architecture
- Partial convolutional mask-aware Corrupted
- Blurry in general and scanlines also generally visible

PartialConv

Original

Baselines: Comparison

Navier-Stokes

X

Fast

No information sharing between images

U-Net

Expressive and works quite well for a lot of problems

OOD requires large datasets and data augmentation

PartialConv

IXI

Convolution takes into account of masks/missing pixels

Requires large datasets and long training times

Supervised Learning

- Single dataset (context) $\mathcal{C} := \{(x^{(c)},y^{(c)})\}_{c=1}^C$
- Learns predictor f(x)
- Predict target points $f(\mathbf{x}_\mathcal{T})$

Further reading: https://yanndubs.github.io/Neural-Process-Family

Meta Learning

- "Learning to learn" Adapt to new supervised tasks
- Collection of datasets/tasks (Meta-dataset)

$$\mathcal{M} = \{\mathcal{D}_i\}_{i=1}^{N_{ ext{tasks}}}$$

• Learns mapping

$$\mathcal{C}\mapsto f(x;\mathcal{C})$$

• Adapt predictor to new context set

$$f(x; \mathcal{C})$$

Further reading: https://yanndubs.github.io/Neural-Process-Family

Satellite inpainting \longrightarrow Meta-Learning problem

Task is 2D function

Context set $(x_C, y_C) := \{x_i, y_i\}_{i=1}^{N_C}$

Target Set $(x_T, y_T) := \{ \bar{x}_i, \bar{y}_i \}_{i=1}^{N_T}$

Task $D := \{C, T\}$ where $C = \{x_C, y_C\}$ $T = \{x_T, y_T\}$

Supervised approach

- Learn global function f_{θ} that predicts $y_T \approx f_{\theta}(x_T)$
- Implicitly distinguish between different tasks

$$f_{\theta}(x_{C_m}, y_{C_m}, x_{T_m}) \approx f_{\theta_m}(x_{T_m})$$

Meta-learning approach

• Objective function
$$\mathbb{E}_{m \sim \mathcal{M}} [\mathcal{L}(\underbrace{D_{\eta}(E_{\xi}(x_{C_m}, y_{C_m}))(x_{T_m})}_{f_{\theta_m}(x_{T_m}) \text{ where } \theta = (\eta, \xi)})$$

- E_{ξ} encodes context (x_C, y_C) to task-specific representation D_{η} decodes representation and target location to output

Neural Processes for Inpainting

- Satellite images are different regression problems
 - Different location and time
- Small dataset for each task

Context points are non-scanline pixels

Target points are entire image (for continuity)

Convolutional Neural Processes

• Translational equivariance

- Convolutional Conditional Neural Processes
- Convolutional Latent Neural Processes

- Trained using Maximum Likelihood
- Multi-Scale Structural Similarity (MS-SSIM) Loss (Wang et al. 2003) generates sharper images

Multi-Scale Structural Similarity (Wang et al. 2003)

- In practice, calculated on **windows** between 2 images convolution with Gaussian kernel
- Then average SSIM over windows
- Spatial structure-aware

$$egin{aligned} l(\mathbf{x},\mathbf{y}) &= rac{2\,\mu_x\,\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1}, \ c(\mathbf{x},\mathbf{y}) &= rac{2\,\sigma_x\,\sigma_y+C_2}{\sigma_x^2+\sigma_y^2+C_2}, \ s(\mathbf{x},\mathbf{y}) &= rac{\sigma_{xy}+C_3}{\sigma_x\,\sigma_y+C_3}, \end{aligned}$$

Structural Similarity (SSIM): $SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$

Multi-Scale Structural Similarity (MS-SSIM): $SSIM(\mathbf{x}, \mathbf{y}) = [l_M(\mathbf{x}, \mathbf{y})]^{\alpha_M} \cdot \prod_{j=1}^M [c_j(\mathbf{x}, \mathbf{y})]^{\beta_j} [s_j(\mathbf{x}, \mathbf{y})]^{\gamma_j}$

Experiments: Data Collection and Training

- NP models from Github implementation by Yann Dubois (Dubois et al. 2020).
- Models trained on Kenya
- Kenya model used for inference on all countries
- Each country has dataset of 1000 images
- 5-fold cross validation with 80:20 split

Experiment 1: Setup

- 10-layer ResNet encoder
- 128 channel representation
- 4-layer MLP in decoder

- \checkmark
- 400 epochs
- Batch size 8
- Learning rate 1e-4
- Exponential decay by factor 5

ConvLNP 64x64

ConvLNP

128x128

ConvCNP

- 8-layer ResNet encoder
- Latent samples:
 - 16 for training
 - 32 for inference
- 8-layer ResNet encoder
- Latent samples:
 - 4 for training
 - 8 for inference

- 200 epochs
- o Batch size 4
 - Learning rate 5e-4

Inpainting results

Experiment 2: Synthetic Downstream Task

- Performance of inpainted results on downstream regression task
- Only 64x64 images
- Clean image and corrupted image (with scanline) also used for downstream task as reference

Step 1: Generate Synthetic Dataset

Downstream task setup

- CNN
 - 2 convolutional layers
 - Kernel size 3
 - Final fully connected layer
- MSE loss

- 300 epochs
- Batch size 8
- Learning rate 1e-3 with reduction on plateau
- Early stopping with patience 8 epochs
- 5-fold cross validation

Downstream Task Results

- Violin plot shows variation in MAPE
 over 5 folds of cross-validation
- ConvLNP performs best
- U-Net performs badly out-of-distribution
- Navier-Stokes
 - Only scanline changes
- Norway is a difficult task
- Not a good measure of PartialConv performance

Navier-Stokes Results

Corrupted

Navier-Stokes

Kenya

Nepal

Original

Norway

Inpainting patches of larger image

Corrupted

Navier-Stokes Inpainted

PartialConv Results

Norway

Corrupted

PartialConv

U-Net Results

Kenya

Corrupted

U-Net Inpainted

Original

ConvNP Inpainted Results

Nepal

Corrupted

ConvCNP

ConvLNP

Kenya

Norway

Corrupted

ConvCNP Inpainted

ConvLNP Inpainted

Original

28

Conclusion and Discussion

- ConvNPs successful at inpainting in-distribution and out-of-distribution
 - ✓ Take advantage of different spatiotemporal structure of satellite images
 - Global inpainter for LANDSAT 7 by only training small subset of locations

Bigger scanlines

Cloud removal

More interesting downstream tasks

Potential Downstream Applications

- Inputs: Imputed Landsat 7 maps
- Model: CNN/Transformers/GNN
- **Outputs:** Housing inequality index, or potentially multivariate outputs

🦟 🛛 <u>Malaria Prevalence Mapping:</u>

- Inputs: Pixels of Landsat 7 maps inside regions of interest
- **Model:** DeepSets, Set Transformer, Gaussian processes over distributions
- **Outputs:** Malaria cases

 $\{x_i\}_{i=1}^{143}$

 $x \in R^{64 \times 64}$

Irregular/set/distribution data → DeepSets/Set Transformer/Gaussian processes over distributions

 $f(x) \stackrel{\text{Image data}}{\underset{\mathsf{NN}}{\overset{\mathsf{CNN/Transformers/G}}{\overset{\mathsf{CNN/Transformers/G}}{\overset{\mathsf{NN}}{\overset{\mathsf{NN}}}}}$

Housing Inequality Index or Malaria cases

or

Thank you!

Our paper: <u>https://arxiv.org/pdf/2205.12407.pdf</u>

Any questions?

References

- Bertalmio et al. (2001). Navier-Stokes, Fluid Dynamics and Image and Video Inpainting. CVPR
- Dubois et al. (2020). Neural Process Family. <u>https://yanndubs.github.io/Neural-Process-Family</u>
- Foong et al. (2020). Meta-Learning Stationary Stochastic Process Prediction with convolutional Neural Processes. NeurIPS
- Garnelo et al. (2018). Conditional neural processes. ICML
- Garnelo et al. (2018). Neural Processes. ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models
- Gordon et al. (2020). Convolutional conditional neural processes. *ICLR*
- Gorelick et al. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment*
- Liu et al. (2018). Image inpainting for irregular holes using partial convolutions. ECCV
- Lugmayr et al. (2022). Repaint: Inpainting using denoising diffusion probabilistic models
- Markou et al. (2022). Practical conditional neural processes via tractable dependent predictions. ICLR
- Nazabal et al. (2020). Handling incomplete heterogeneous data using vaes. Pattern Recognition
- Richard and Chang (2001). Fast digit image inpainting. VIIP
- Ronneberger et al. (2015). U-net: Convolutional networks for biomedical image segmentation. *International Conference on Medical image computing and computer-assisted intervention*
- Scaramuzza and Barsi(2005). Landsat 7 scan line corrector-off gap-filled product development
- Telea (2004). An image inpainting technique based on the fast marching method. *Journal of graphics tools*
- USGS. Landsat 7 Courtesy of the U.S. Geological Survey.
- Wang et al. (2003). Multiscale structural similarity for image quality assessment. Asilomar Conference on Signals, Systems & Computers