
Y3 Robotics Manipulation Report - BOB
Alexander Pondaven Tian Yi Lim Shuanghua Liu

01730117 01564851 01729607

1 Task 1 - Modelling the Robot

1.1 Coordinate Frame Assignment and DH Notation Table

Figure 1: Coordinate Frame Assignment

i αi−1 ai−1 di θi Remarks
0 0 0 0 0 World Frame
1 0 0 34 θ1 Base of first servo
2 π

2
0 0 π

2
Intermediate

3 0 43 0 θ2 Base of second servo
4 0 128 0 −π

2
Elbow between servos

5 0 24 0 θ3 Base of third servo
6 0 124 0 θ4 Base of fourth servo
7 0 126 0 0 End effector

Table 1: Task 1 DH Notation Table

The chosen coordinate frames are drawn in Figure 1 (Image from ROBOTIS e-Manual for
OpenMANIPULATOR-X). The world frame is at the base of the robot and the first servo’s frame
is just above it. An intermediate frame is required to rotate around the x-and z-axes, so that the
next frame at the base of the second servo is correctly positioned with the x-axis aligned with the
link. Another frame is added at the right angle at the top right (fixed joint) and the next frame (i=5)
describes the third servo. The fourth servo’s frame is just along the link length. The end effector’s
frame is a fixed distance along the gripper from the previous frame. Each joint angle θi is also given
in the DH Table 1.

1.2 Robot Graphical Simulation

The arm can be visualised in MATLAB as seen in Figure 2. Each link is a black line and each
coordinate frame is found by multiplying the transformation matrices and plotting the three columns
of the rotation matrix as the basis vectors. Each vector in the frame is coloured as: X - red, Y - green,
Z - blue. The world frame is made larger than the others.

Figure 2: Task 1b Graphical Simulation in Matlab of arm and coordinate frames

1.3 Inverse Kinematics Solution

The IK problem can be simplified by realising that θ1 can be calculated directly from the end effector
position x, y, z as the arm moves radially around its centre and all other joints move in the same
2D plane. This means that transformation matrices Ti in the IK become 3x3. Therefore, the new
coordinates in this plane can be defined as shown in Figure 5.

Figure 3: Task 1 IK Problem Re-formulation

The final link’s angle can also be given as a parameter θg, the angle of the end effector relative to
the world frame, as the tasks like picking up a cube must be done with the end effector pointing at
a particular angle. This simplifies the problem to solving for θ2 and θ3 to get to the position of the
joint before the end effector. The final angle θ4 can then be derived from these results and θg . All IK
calculations are in Appendix with the final results shown below.

θ1 = atan2(y, x) , x′ =
√

x2 + y2 and y′ = z − 77

θ3 = atan2(sin(θ3 + α), cos(θ3 + α))−α where sin(θ3 + α) =
(x′)2 + (y′)2 − L2

3 − L2
2 − L2

1

2L3

√
L2
2 + L2

1

and α = arctan
L2

L1

θ2 = atan2(sin(θ2 + α2), cos(θ2 + α2))− α2

where sin(θ2 + α2) =
y′√

k21 + k22
, α2 = arctan

k2
k1

, k1 = L3c3 + L2 and k2 = L3s3 + L1

θ4 = θg − θ2 − θ3

1.4 Inverse Kinematic Simulation

A square can be drawn as in Figure 4 by linearly interpolating x, y, z points and doing IK on each
position to get each joint’s angle. The square is also traced out with coloured line objects in Matlab.
Note that squares look distorted from the 3D point of view.

Figure 4: Task 1d IK Square tracing in all planes (Recording of simulation in video demo)

2

2 Task 2 - Pick and Place (Wooden Blocks)

2.1 Gripper Design

While the standard gripper is adequate for the task, problems arise when attempting to rotate cubes
when the cube holder is too far away from the robot base, as the arm is too short to raise the end
effector past a certain height given a specified orientation and x, y position. When attempting to grab
cubes from cube holders that are in the close vicinity of other cube holders while θg = 0, the bottom
of the gripper may collide with the cube holders. These problems could be solved in software, but as
their root cause was in hardware, an alternative gripper was designed.

Our alternative gripper (Figure 13) has a shorter distance from the adapter plates. This makes it
possible to pick and place cubes with θg = −π

2 further away from the arm and θg = 0 closer to the
arm. It is also offset from the centre of the gripper. This allows it to avoid hitting the lower part of
the gripper on cube holders. With our alternative gripper, two additional entries are needed in the
DH table, as shown in Table 2. One entry rotates the direction of the gripper 90◦ downward, and the
next accounts for the additional distance of the end effector from the centre line of the gripper servo,
labelled L5.

i αi−1 ai−1 di θi Remarks
8 0 0 0 −π

2
Rotation downwards

9 0 L5 0 0 New end effector position

Table 2: Task 2 DH Notation Table Extension

Figure 5: Task 2 modified linkage diagram

The standard inverse kinematics is adapted to the new gripper by calculating the coordinates of the
gripper servo from the specified end effector coordinates.

To obtain T4 as before, we express ∆x′ and ∆y′ as the change in x′ and y′ from T4 to T5. We then
obtain

θgo = θg − atan2(L5, L4)

Dgo =
√

L52 + L42

∆y′ = Dgo sin(θgo)

∆x′ = Dgo cos(θgo)

We then obtain
T4x′ = T5x′ −∆x′

T4y′ = T5y′ −∆y′

And the rest of the IK calculation follows.

3

2.2 Software Approach

A generalisable approach (see Figure 10) was taken to moving cubes. One must only specify the cube
holder locations and the steps required to manipulate the cubes. This breaks down the movement
of the cubes simply into their start and end cube holders and the required change in orientation.
Furthermore, it allows for the cubes to be rotated and translated simultaneously. It then automatically
calculates the entire trajectory for the arm before writing those joint angle instructions for the path to
the servos.

2.3 Path Planning

The first step to generic motion is to find a feasible, collision-free path through the task space. To this
end, A* search with some task-specific optimisations was applied.

A* search To move from one end effector orientation to another, four parameters are varied: The
Cartesian locations (x, y, z) and orientation of the end effector θg. Applied naively, this results in
a 4-dimensional search space, leading to long search times. However, note that if the start and end
orientation are both feasible, then all intermediate orientations will also be feasible due to the lack of
obstacles above the ground plane. Therefore, A* search only needs to be applied in 3 dimensions.
We use a Euclidean distance heuristic as the robot arm can move arbitrarily in the occupancy grid
coordinate system defined.

Creating Occupancy Grid The occupancy grid is a 3-dimensional grid in |x′, y′, θ1| space. Choos-
ing such a coordinate system more naturally maps to the IK that underpins the robot’s motion,
which simplifies further calculations. To create the grid, its limits and resolution are first defined
in createOccupancyGrid. The input cube and cube holder centre locations are then translated
from x, y, z Cartesian space to the modified occupancy grid space.

All possible grid locations are then iterated over, and if a grid location is within the bounding box
of a cube or cube holder, it is considered ‘occupied’ and thus marked with a 1. If not, it is left as a
0. For x′ and y′ values, upper and lower bounds are straightforward to calculate. For θ1 values, the
upper and lower bounds α1, α3 are obtained by adding the angle to the near corner of the cubes to
α2, the θ1 orientation of the cube. This is illustrated in Figure 6.

End Effector orientation interpolation As A* search does not search over end effector orientation,
it is possible that for a commanded cube rotation, only two waypoints are produced (as the start and
end waypoints differ only in orientation, not location). There is no guarantee that the resulting large
movements in joint space will be collision-free. Therefore, it is necessary for a minimum number of
task-space waypoints to be generated for every planned path if the end effector orientation changes.

To this end, the difference in orientation between waypoints is used to determine how many points
to linearly interpolate for in task space. For smooth performance, we interpolate to obtain 15
intermediate points per 90◦ orientation change. This ensures that the end effector does not change in
position while performing large orientation changes.

Figure 6: Occupancy Grid Visualisation
Figure 7: Quintic interpolation between waypoints

4

2.4 Trajectory Planning

Setting joints to linearly move from one waypoint to another led to jittery movement as joints did not
arrive at the specified angle at the same time. If one angle is much smaller than the others, it moves
quickly and stops, which is not smooth.

Quintic interpolation Trajectory planning resolves this issue by fitting the joint angles at each
waypoint (via point) with a curve according to several constraints. The joint angles at each via point
were fit with a 5th degree polynomial (quintic) to have a smooth cubic acceleration (2nd derivative).
Each segment between via points fit its own quintic with 6 coefficients according to several constraints.
These constraints enforced the same position, velocity and acceleration before and after each via
point, which made the entire path smooth even though each segment was fit with its own quintic. The
beginning and end started at zero velocity and acceleration. This became a simultaneous equation to
solve in MATLAB (interpQuinticTraj) and the curve can be seen plotted in Figure 7. Each
segment between via point angles for each joint is fit with its own quintic.

Assign Via Times The interpolation assumes knowledge of the time between each via point and the
total time required for the path. This was important to tune correctly to avoid spikes in acceleration
but to also move as quick as possible. Several heuristics were developed to help automatically
determine these values. The total trajectory time was estimated as proportional to the sum of the
max distance travelled out of the joints over all segments. The linear heuristic spaced the via times
evenly over time. A velocity heuristic was also developed that assigns more time to segments with
larger difference in joint angles. The acceleration heuristic used a 1D Laplace filter (difference in
gradients) over the joint angles at via points to estimate the 2nd derivative (acceleration). More time
was assigned to segments with a larger acceleration to avoid jerky movement and this metric led to
the least amount of jerky movement compared to other heuristics, for example linearly spacing time
points, or using a velocity-based heuristic.

2.5 End effector movement

Position control mode with waypoints was found to give jerky behaviour. Thus, Velocity control
mode was used for the Dynamixels excluding the gripper. A Feedforward PID controller was used,
with characteristic equation vout = vfeedforward +Kpe(t) +Ki

∫
e(t)dx+Kd

de(t)
dt

The controller loops until the last waypoint has been reached. Over each loop, it samples the intended
velocity from the appropriate set of quintic coefficients for the feedforward term. The error term is
obtained by comparing the current intended position (sampled from quintic) with the current servo
position. Summing the error with an accumulator provides the integral component, while comparing
the difference with the previous error provides the differential component.

The controller requires reading the current position and writing the desired velocity. In addition, the
current controller velocity is also read out for debugging purposes. Using the read4ByteRxTx
syntax thus requires 12 separate read/write operations to be performed each loop, which has a long
latency. This then results in a lower sampling frequency, degrading the performance of the velocity
controller. Hence, the groupSyncRead syntax was used, allowing for effectively three read/write
operations per loop, improving the controller’s responsiveness.

3 Task 3 - Trajectory Following (Drawing)

3.1 Gripper Design

The gripper design for this task involves a pen holder that holds the pen vertically, and a gripper that
grips the pen vertically. The arm holds the pen with θg = 0 using force closure. Non-slip matting
was added to maximise the friction force and also deforms to act as form closure. Some cutouts were
also added to decrease 3D printing time, allowing for a faster turnaround.

3.2 Software Approach

The approach for Task 3 (see Figure 11) involved following a trajectory by specifying the current
position of the end effector, the lines’ endpoint coordinates, the arc start point, center and angle of

5

rotation. The waypoints are linearly interpolated and the arm follows this sequence: initial position−→
pick up position−→white board−→drawing−→deposit position. The joint angles at each via point are
calculated using IK and via times are assigned for quintic interpolation. Joint angles are then written
to servos using the feedforward PID controller.

3.3 Path Definition

The path for this task consists of three parts: picking up the pen, drawing, and putting the pen back.
The picking up task first reads all servos’ positions, and obtains an initial end effector coordinate using
forward kinematics. The other coordinates are the positions for hovering above the pen, gripping the
pen, hovering again, and moving to the start position of drawing.

The drawing task is defined by three lines and one arc. The waypoints for the lines are linearly
interpolated between the endpoints of the lines. The waypoints of the semicircle are also linearly
interpolated around its circumference.

The coordinates for putting the pen back are the final position of drawing and the hovering positions
of the pen holder as defined in the picking task. All waypoints are generated linearly between these
coordinates.

The semicircle function is a generic approach of generating the arc, which takes the center and start
point of the arc, the angle of the arc, and the number of sample points. The way points are generated
by Xarc = radius∗cos(θ)+Xcenter and Yarc = radius∗ sin(θ)+Ycenter. The angle θ is sampled
linearly, so the waypoints are linearly spaced along the arc.

4 Task 4 - Buzz Wire Game

Our team wished to investigate the possibilities of alternative gripper designs that afforded an extra
degree of freedom within the constraints of the coursework specification. This was for the robot arm
to play a Buzz Wire game where the robot must manipulate a buzzer in such a way to prevent the
metal loop from touching the wire. In doing so, the robot must be able to rotate the buzzer along
its lengthwise axis, something not possible with the default robot gripper. This could be seen as a
simulation of a robot performing a delicate operation, for example in a surgical operation.

The original game can be seen in Figure 35. The buzz wire device was modified to take a piece
of brass wire as the wire to allow us to more easily shape the path followed by the robot (seen in
Figure 36). In addition, the buzz wire was constrained to be in two dimensions to allow us to bend
the wire more accurately to specific dimensions.

4.1 Software Approach

To complete the Buzz Wire game (see Figure 12), it takes in the configuration of the buzz wire (wire
bends) as input and a linear path between these bends are generated. The angle of the buzzer tool was
determined by the angle between adjacent coordinates along the path. This angle relative to the world
was converted into the required buzzer angle relative to the gripper as explained below. A linear
relationship between this buzzer angle and the required gripper angle θ4 was determined empirically.
These waypoints are converted into a trajectory as in previous tasks.

4.2 Gripper Modifications

The gripper jaws were used in a rack-and-pinion style to rotate the buzzer as required (seen Figure 34).
This translates the linear motion of the gripper jaws back to a circular motion.

To ensure that the buzzer is kept at a fixed location relative to the gripper servo, rubber bands were
used to hold a pair of circular gripper guides in between the gripper jaws. Each rubber band exerts
the same tension on the central gripper guide, thereby keeping the buzzer centralised and allowing
for the same inverse kinematic calculations to be performed.

The rubber band hooks are delicate and narrow and were unsuitable to be printed together with the
main gripper jaws. Therefore, they are separate parts which are subsequently attached using screws.
More pictures are in the Appendix. Refer to the video for an example of the mechanism working.

6

4.3 Calculating Buzzer Orientation

We define the required buzzer angle θbz as the angle the buzzer needs to be rotated to be parallel
to the local buzz wire segment. Bearing in mind the coordinate system defines clockwise rotations
as negative, θbz = θB − θ1 for any given combination of hip angle and local buzzer orientation
(illustrated in Figure 8).

Figure 8: Buzzer Orientation Diagram

However, as the pointwise orientation of the buzzer corresponds to its instantaneous value, this results
in sudden, jerky motion near corners. Therefore, a moving average filter is applied to the vector of
buzzer orientation values using the conv function. Some look-ahead is also applied to the values by
reading the filtered vector ahead of the current via point index. This allows the buzzer to rotate before
encountering the corner for smoother motion.

To convert buzzer orientation into the actual angle for the gripper servo θ4, a linear relation between
the gripper position and buzzer orientation was assumed. The servo was placed into position control
mode and the range of possible values for gripper position, along with their corresponding buzzer
angles, were measured. A neutral position was decided as the buzzer angle corresponding to θ1 = 0
with a buzzer wire parallel to the y-axis, by our convention θbz = −90◦. This was assigned to be the
middle of the gripper’s range of motion. Empirically, a symmetrical range of motion of ±90◦ from
the horizontal was measured. Practically, this reliably allowed for buzz wire paths around 45◦ from
the horizontal to be traced, informing our decision-making for the demonstration buzz wire path.

5 Conclusion and Further Work

In conclusion, velocity control was successfully implemented along with quintic interpolation for via
points in joint space, allowing for smooth motion of the end effector through the task space for all
three practical tasks.

However, due to the occupancy grid for the A* search being relatively sparse for performance reasons,
the waypoint selection in task space was sometimes jerky and not direct. This could have been further
smoothed out by perhaps using the waypoints as spline control points instead of directly, or some
other method of sparsifying the waypoints.

It was observed that it was difficult to command the servos to move smoothly at very low speeds, as the
inertia/static friction of the motors was difficult to overcome at low velocity demands. Furthermore,
as the arm was extended far away from the base, the effect of gravity on the arm’s links was non-
negligible, leading to ‘nodding’ motion. To address this, perhaps a dynamical model of the robot
operating on joint torques could be applied instead. In conjunction with this, finding a method
to increase the sample rate of the control system would allow for control inputs to occur more
responsively to external disturbances.

7

A IK Calculations

Define transformation matrices T0 − T5. Note ci = cos θi and si = sin θi.

T0 =

0 −1 0
1 0 0
0 0 1

 (Rotate + 90◦) T1 =

c2 −s2 0
s2 c2 0
0 0 1

T2 =

1 0 128
0 1 0
0 0 1



T3 =

 0 1 0
−1 0 0
0 0 1

 (Rotate − 90◦) T4 =

c3 −s3 24
s3 c3 0
0 0 1

T5 =

1 0 124
0 1 0
0 0 1


Apply transformations to get position in terms of angles

T0T1 =

−s2 −c2 0
c2 −s2 0
0 0 1



T0T1T2 =

−s2 −c2 −128s2
c2 −s2 128c2
0 0 1


T0T1T2T3T4 =

c2c3 − s2s3 −c2s3 − s2c3 24c2 − 128s2
s2c3 + c2s3 c2c3 − s2s3 24s2 + 128c2

0 0 1

 =

cos(θ2 + θ3) − sin(θ2 + θ3) 24c2 − 128s2
sin(θ2 + θ3) cos(θ2 + θ3) 24s2 + 128c2

0 0 1


T0T1T2T3T4T5 =

cos(θ2 + θ3) − sin(θ2 + θ3) 124 cos(θ2 + θ3) + 24c2 − 128s2
sin(θ2 + θ3) cos(θ2 + θ3) 124 sin(θ2 + θ3) + 24s2 + 128c2

0 0 1


The position vector can be found from the rightmost column of the transformation matrix:

x′ = L3 cos(θ2 + θ3) + L2c2 − L1s2

y′ = L3 sin(θ2 + θ3) + L2s2 + L1c2

(x′)2 = L2
3 cos

2(θ2+θ3)+L2
2c

2
2+L2

1s
2
2+2L3 cos(θ2 + θ3)L2c2−2L3 cos(θ2 + θ3)L1s2−2L1L2s2c2

(y′)2 = L2
3 sin

2(θ2+θ3)+L2
2s

2
2+L2

1c
2
2+2L3 sin(θ2 + θ3)L2s2+2L3 sin(θ2 + θ3)L1c2+2L1L2c2s2

(x′)2 + (y′)2 = L2
3 + L2

2 + L2
1 + 2L3L2 cos θ3 + 2L3L1 sin θ3

(x′)2 + (y′)2 − L2
3 − L2

2 − L2
1

2L3
= L2 cos θ3 + L1 sin θ3

Solve for θ3

By R-formula, L2 cos θ3 + L1 sin θ3 = R sin(θ3 + α) where R =
»
L2
2 + L2

1 and α = arctan
L2

L1

∴ sin(θ3 + α) =
(x′)2 + (y′)2 − L2

3 − L2
2 − L2

1

2L3

√
L2
2 + L2

1

This is checked if feasible. Calculate θ3 = atan2(sin(θ3 + α), cos(θ3 + α))− α. Now to find θ2:

x′ = L3(c2c3 − s2s3) + L2c2 − L1s2 = k1c2 − k2s2

y′ = L3(s2c3 + c2s3) + L2s2 + L1c2 = k1s2 + k2c2

where k1 = L3c3 + L2 and k2 = L3s3 + L1 are known.

8

By R-formula, y′ = k1s2 + k2c2 = R2 sin(θ2 + α2) where R2 =
»
k21 + k22 and α2 = arctan

k2
k1

Can then calculate θ2 = atan2(sin(θ2 + α2), cos(θ2 + α2)) − α2 as θ3 and thus k1 and k2 are
known.

The final angle θ4 = θg − θ2 − θ3 as derived in Figure 9.

Figure 9: θ4 derivation from other joint angles

9

B Software approaches

Figure 10: Task 2 Software Approach

10

Figure 11: Task 3 Software Approach

11

Figure 12: Task 4 software approach

12

C CAD Screenshots

C.1 Task 2 Gripper

Figure 13: Gripper - Top view (left), Side view (middle), Front view (right)

Figure 14: Top View

13

Figure 15: Front View

Figure 16: Side View

14

Figure 17: 3D View

Non-slip matting, cut to size, is attached to the edges of the jaws with double-sided tape to increase
the grip of the gripper.

Figure 18: 3D Printed Models

Several iterations of the 3D printed grippers are shown, illustrating the construction methodology.
The gripper with the red rectangle is the final one used.

15

C.2 Task 3 Gripper

Figure 19: Top View

Figure 20: Front View

16

Figure 21: Side View

Figure 22: 3D View

As with the Task 2 gripper, non-slip matting is applied to the interior of the gripper to better conform
to the shape of the marker.

17

Figure 23: 3D Print

C.3 Task 3 Pen Holder

Figure 24: Top View

Figure 25: Front View

18

Figure 26: Side View

Figure 27: 3D View

19

Figure 28: 3D Print

C.4 Task 4 Gripper

Figure 29: Top View

Figure 30: Side View

20

Figure 31: 3D View

Figure 32: Buzz Wire Holder

21

Figure 33: 3D Print Top View

Figure 34: 3D Print Side View

22

C.5 Task 4 Buzzer Game

Figure 35: Original buzz wire game

Figure 36: Modified buzz wire game

23

	Task 1 - Modelling the Robot
	Coordinate Frame Assignment and DH Notation Table
	Robot Graphical Simulation
	Inverse Kinematics Solution
	Inverse Kinematic Simulation

	Task 2 - Pick and Place (Wooden Blocks)
	Gripper Design
	Software Approach
	Path Planning
	Trajectory Planning
	End effector movement

	Task 3 - Trajectory Following (Drawing)
	Gripper Design
	Software Approach
	Path Definition

	Task 4 - Buzz Wire Game
	Software Approach
	Gripper Modifications
	Calculating Buzzer Orientation

	Conclusion and Further Work
	IK Calculations
	Software approaches
	CAD Screenshots
	Task 2 Gripper
	Task 3 Gripper
	Task 3 Pen Holder
	Task 4 Gripper
	Task 4 Buzzer Game

