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1 Abstract 
A remote-controlled and autonomous Mars rover was assembled and programmed. The rover was designed to make autonomous 

decisions such as avoiding obstacles and moving to a target position. This was achieved by processing camera images on a DE10-Lite 

FPGA to detect obstacles and sending the information to a ESP32. This microprocessor then sends movement decisions to an Arduino 

to move the rover and report position information. A web interface allows for monitoring the rover’s position, battery usage and includes 

a video feed. This also allows for position remote control and adjusting object detection parameters in real time.  

2 Structural Design  

2.1 Data flow diagram 
 

 

Figure 1. Structural diagram 

A detailed explanation of data transfer can be found in Section 4.8, while detailed explanations on data transfer within the ESP32 can 

be found in Section 4.4.2. 

2.2 Client Server Model 
The command system follows a client-server model, with a front-end web page and back-end server. The server is hosted on a cloud IP 

address, accessing the specific IP address on port 3001 on the browser would direct user to the front-end web page. 
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Figure 2 Client Server Architecture 

The client requests data from the server and displays on the webpage. The server, on the other hand, receives message from the rover, 

updates its database, and sends data to clients upon request. It is possible to have more than one client, but the server is designed to only 

connect to one ESP32. 

2.3 Webpage Design 
The client webpage consists of a home page and several subpages. 

 

Figure 3 Web Page Site Map 

Details on information displayed on each page is explained in Section 3.1.7 

3 Functional Design 

3.1 Functionality 

3.1.1 Use Case  

 

Figure 4 Use Case Diagram 
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3.1.2 Control Modes of the Rover 
3 control modes are available for user to choose, being Direction Control, Position Control and Exploration.  

In direction control, user decides the direction rover goes: forward, backward, left and right. This mode has the rover totally controlled 

by human. In position control, user inputs a coordinate and the rover would directs itself towards that coordinate while avoiding 

obstacles. Human decides on the destination of the rover, but the rover decides on the path. Last but not least, exploration mode lets the 

rover wanders around to explore its local working area. 

Details implementation on control modes are explained in Section 4.4 

3.1.3 Obstacle Avoidance 
The rover can avoid obstacles in exploration mode and position control mode. The ESP32 obtains bounding box information from the 

FPGA and uses it to avoid obstacles while moving. 

3.1.4 2D Map Construction 
The rover can detect and calculate the distance of the obstacles from the rover and its angle. Alongside with position of the rover, 

measured by an optical flow sensor, the system could calculate the positions of the obstacles. In real-life scenario, the rover could be 

used to survey environments that human cannot reach. 

3.1.5 Dynamic Colour Configuration 
To improve accuracy of obstacles detection in different lighting environment, dynamic colour configuration on the vision subsystem is 

supported. User could change the gain, exposure, HSV range of each colour on the webpage, and affecting the FPGA’s decision on 

obstacle detection.  

3.1.6 Video Streaming 
The rover streams colour video at QVGA resolution to the webpage, at about 0.5 FPS. This allows the user to see where the rover is and 

make other decisions such as how to move. Additionally, the user can visually see how well the obstacle detection is doing in the current 

circumstances and adjust accordingly. For example, if there is a sudden sandstorm on mars and the image becomes very dark, the user 

can increase the gain settings to improve obstacle detection in real time. 

3.1.7 Webpage Display 
A webpage dashboard is used to display rover’s status data and allow users to input command. 

The home page provides a brief overview of each subsystem, clicking into each card will bring the user to the respective subpage. An 

expandable sidebar also allows user to jump to different subpages.  

 

Figure 5 Web Page Home Subpage 

The Battery subpage provides details on properties and information of the energy subsystem, including State of Charge, State of Health, 

battery usage history and power-voltage graph. It also has a notification display to alert user such as low battery charge or heating up of 

battery. 
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Figure 6 Web Page Battery Subpage 

The drive subpage, on the other hand, provides details of the drive subsystem. It displays the speed and steering of the rover. A 2D map, 

containing obstacles’ positions, rover’s past and current position, is also displayed on the page.  

 

Figure 7 Web Page Drive Subpage 

The Video subpage provides real-time video streaming from the camera in the vision subsystem. The video is in resolution 320x240 

with a framerate of around 0.5 frames per second.  

 

Figure 8 Web Page Video Subpage 
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The controller subpage allows user to remotely control the rover with 3 different control modes available. 

 

Figure 9 Web Page Controller Subpage 

3.2 Functional / Non-Functional requirements 

3.2.1 System requirements: 
Subsystem Functional requirements Non-Functional requirements 

Vision a. Processor should send coordinates of five bounding 

boxes to the ESP32, corresponding to the position of 

five uniquely coloured ping pong balls (red, pink, 

yellow, green, blue). 

b. If the coloured ping pong ball does not exist in the 

image, the coordinates for that colour should be zero. 

c.  The hexadecimal displays, switches, and buttons must 

be used to allow for rapid testing and feedback. 

d. The image processing module must be able to output 

the image frame with bounding boxes around the 

detected ping pong balls. 

e. The NIOS II must be able to send data (e.g. bounding 

box coordinates) and read data (e.g. camera settings) 

from the ESP32. 

a. Be able to perform well in different light 

conditions. 

b. The DE-10 Lite should read RGB pixels from the 

D8M camera at a rate of 60 fps. 

c. The output image should not have glitches due to 

timing issues and should look like the input 

image. 

d. The FPGA switches should enable switching 

between different image outputs like grey-scale 

image and the image with boundary boxes. 

e. Bounding boxes should completely surround the 

corresponding coloured ping pong ball 

Control a. Data sent from one subsystem to another through the 

ESP32 should be sent correctly 

b. ESP32 should be able to obtain obstacle data form 

FPGA and make movement decisions to avoid them. 

a. Data should be sent with a minimum delay 

b. Certain data (ie commands for remote control) 

should be prioritised over other data (ie Video 

data) to minimise latency. 

Video 

Streaming 

a. The FPGA should be able to send images to the ESP32 

which should send them to the web server for 

displaying 

a. Video streaming should use minimal CPU 

processing on the Nios II, ESP32 and server. 

b. Video streaming should use a small network 

bandwidth 

Command a. Displays rover’s status diagram (e.g. speed, position) 

b. Provide interface for user to remotely control the 

rover 

a. Data should be displayed on web page with 

minimum delay 

 

Drive a. Optical flow sensor should work properly with motor, 

to achieve a better motion control. 

b. Position Data should be send correctly to esp32. 

c. Communication through serial monitor should receive 

a decoded data.  

d. Position should be controlled base on received 

instruction. 

e. Angle should be controlled base on received 

instruction. 

a. Have less delay in the control system.  

b. Accurate position sensing 

c. Accurate position control.  

d. Accurate angle control.  

Power a. Balanced battery voltage and capacity remaining 

should constantly be monitored 

b. Battery charging method should be properly designed 

c. PV should charge battery at maximum power point 

a. Battery and PV should be connected in the way to 

have ideal and practical performance 
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4 Implementation 

4.1 Vision Subsystem 

4.1.1 Overview 

4.1.1.1 Aim 

The Vision subsystem uses the video input from the D8M camera (OV8865). The DE-10 Lite FPGA aims to decrease the large data 

flow from the camera by finding just the coordinates of bounding boxes around ping pong balls to be sent to the ESP32 microcontroller. 

There are five ping pong balls that need to be identified, each having a distinct colour (red, pink, yellow, green, blue). The project code 

was built off Edward Stott’s GitHub code [1]. 

4.1.1.2 Environment 

The NIOS II processor was programmed on Eclipse and the Verilog image processing project was written and compiled in Quartus 

v16.1.  

4.1.1.3 Design Architecture 

 

Figure 10. Image Processing (EEE_IMGPROC) Block 

The overall structure of the video pipeline is seen in Figure  [1]. The architecture of the image processing (EEE_IMGPROC block) done 

to compute the bounding box coordinates from the RGB pixels is outlined in Figure .  

4.1.2 Image Processing 

4.1.2.1 Pre-processing 

Several pre-processing algorithms were explored to improve the performance of bounding box detection and reduce the high frequency 

noise that appeared on the poor quality 640x480 pixel image. Average or gaussian blur algorithms used a 3x3 window that convolved 

with the image pixels i.e., took a linear combination of nine values with the weights defined by the algorithm’s window/kernel 

(demonstrated in [2] with kernel “sliding” across source image). 

Image pixel data was processed one pixel at a time (no random access of pixels in frame), so as the pixels entered the processing module, 

the pixel values needed to be stored. For a 3x3 window, the previous two rows needed to be stored to operate on the pixels above the 

current pixel. Initially, the values were stored in 2D register arrays in Verilog, which acted as shift registers as they shifted the pixels 

upwards as new data entered the pipeline. In this method, the linear combination of values (multiplying/dividing weights and adding) 

was all done in one cycle, leading to timing issues due to the large critical path and glitches seen in Figure . After optimising the 

calculations by bit slicing (removing division) and using the fact that the matrix calculation was separable (discussed below), the 3x3 

convolution worked, but 5x5 convolution increased the critical path too much again. The calculations could be pipelined, but this method 

was messy in terms of registers. This made it difficult to find errors, especially due to 10-minute compilation times. 

A cleaner, more modular window generation method was developed to allow testing separate from the entire pipeline. This involved 

storing the rows in two FIFOs (first in first out) in RAM that stored the entire two previous rows. This was implemented in Verilog with 

the FIFO module, where FIFOs were written to initially until they had 639 entries (one row of image data), and then they were written 

to and read from every clock cycle. This module (seen in Figure ) could then be used in a separate module to implement different 

algorithms, accessing all nine pixels in the same cycle. The module could easily be debugged and simulated on a stream of consecutive 

numbers individually to verify quickly if it worked (simulation results seen in Figure ). 
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Figure 11. 3x3 Window Generation Module [3] 

The row buffer logic was done using the “almost full” FIFO signal to check when the FIFO had been filled with one row of pixels (639 

entries) as seen in the window module code in Figure 58. Note that the second-row buffer read and wrote if it had been filled with a row 

of pixels. If it had not been filled yet, but the first buffer was filled, the second buffer was only written to (not read from) so that it could 

be filled. Otherwise, if the first buffer was not filled either, the second buffer was not read or written to, to allow the entries to fill the 

first buffer first.  

The 3x3 convolution algorithm was determined by the weight matrix. An average blur would just have 1/9 as the weights for each entry 

as it averaged all nine entries. Gaussian blur had a higher weight for the centre pixel, and lower for the outer pixels as seen in Figure  

[4]. The Gaussian blur window matrix is separable (separated into two different linear operations), which allowed the input pixels to be 

convolved horizontally (convolve three rows) and then those results to be convolved vertically (one convolution) as seen in the code in 

Figure 12. This reduced the complexity of the algorithm from O(n2) (multiplying by each weight and adding all nine values) to O(n), 

which could help even more for larger convolutions like a 5x5 window. The 3x3 window was used in the final product rather than a 5x5 

window as that would have required four FIFOs to store four rows and the memory usage needed to be minimised to fit. 

 

Figure 12. Gaussian blur separable code 

Gaussian blur was found to produce the best results as it tended to preserve the shapes of edges better than a simple average blur. This 

allowed for random noise to be removed while the important edges around the ping pong balls were preserved. The blur performed best 

by applying it to a Boolean image (acting on only particular detected pixels e.g. only very red detected particles (explained in Section 

4.1.2.2)). Edge detection or filters on the grey-scale image performed poorly due to the poor quality of the image and the large amount 

of high frequency noise. Applying the blur to just detected pixels (Boolean image) allowed unwanted noise to be “smoothed out” and 

then a threshold was applied to only detect pixels that were of high intensity after the blur. This improvement can be seen in Figure . 

 

Figure 13. Before (left) and after (right) blurring detected red pixels. 

Exposure and gain were very important settings that impacted detection. They often needed to be tweaked in the NIOS II code by 

inputting a character to either increase or decrease the values. This was then done through the webpage, so the user could set these 

values, as the algorithm’s performance was quite dependent on lighting conditions. 
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4.1.2.2 Colour detection 

The aim of colour detection was to maximise the number of detected pixels on a particularly coloured ping pong ball (cluster of pixels) 

and to minimise the number of pixels detected in the background (false positives). These clusters of detected pixels could then be used 

to find the bounding box of the ball (detailed in Section 4.1.2.3).  

4.1.2.2.1 Basic colour detection 

Initially, each pixel from the camera has a red, green and blue value (each 8-bit). These values were very susceptible to different lighting 

conditions but could be used for simple detection algorithms. The basic detection used in Edward Stott’s code [1] involved checking 

that the most significant bit of the red value was asserted, while the most significant bits for green and blue were unasserted, which 

detects pixels that are more red. This could be used for very basic red ping pong ball detection, to test bounding box detection and 

communication between subsystems early on.  

This red ball detection performed badly as it could not differentiate the red ball and pink ball well. The camera also had artifacts or rings 

around the centre of vision with decreasing brightness, and this made it difficult for the ping pong ball to perform well in the centre of 

the screen (bright) as well as in its peripheral vision in the corners of the image where it appeared darker. Taking a similar approach for 

the other colours like yellow (high red and green values) performed even worse as the yellow light reflecting off the white table made 

the entire table under the ping pong balls get detected as yellow. Similarly, the blue ball appeared almost black on the image if the gain 

was not high enough, which made it difficult to differentiate between black items in the environment. A contrast function [5] was also 

implemented (see Figure ) to try to make it easier to differentiate colours in the image. Although, this was still very light sensitive, and 

it was hard to configure the detection for all the ball colours. 

4.1.2.2.2 HSV implementation 

Converting from RGB to the HSV (Hue, Saturation, Value) colour space was the best way to detect the most pixels of a particular colour 

on a ball. The hue represents the colour, the saturation represents the amount of grey, and the value represents the brightness [6]. A RGB 

to HSV converter module (RGB2HSV.v) was created to be tested individually. Hue took into account all red, green, and blue values to 

calculate the colour, and a range of hues could be taken to select a particular colour as the ping pong ball may have had slightly different 

hues depending on lighting conditions. A range of saturation and values were also given to select the same colour but in different light 

conditions. This allowed selection of pixels of the same colour but with a different brightness, which was useful to find the ball both 

when it was in the centre as well as in the corners of the frame where it is darker. The selection of a range of saturation helped when 

differentiating between pink and red, since they both had the same hue, but pink had a lower saturation than red. Yellow also had a 

larger saturation than the white background, which made distinguishing them very easy by selecting a range of saturations. 

The hue, saturation, and value were all made to be in the range 0-255 through the hardware implementation of the HSV equations [7]. 

This made it very easy to have the HSV values as output pixels, so the grey-scale image would help visualise how they change in real-

time by the intensity/brightness of each pixel (very helpful for Section 4.1.2.2.3). The implementation was heavily pipelined as it used 

division and multiplication that caused timing problems if done in a single cycle. An overview of the hardware can be seen in Figure . 

4.1.2.2.3 HSV Range Selection 

Selecting these ranges for hue, saturation, and value was done experimentally. It would have been inconvenient to try values in Verilog 

and compile the project each time, so memory mapped registers were used, which stored the upper and lower bounds for the HSV values. 

These values could be adjusted in the NIOS II code in Eclipse for rapid testing. One of the switch configurations showed the pixels that 

were detected given a particular set of HSV ranges, and this could be tweaked to maximise the number of selected pixels for the particular 

ball colour, while minimising any false positive detections. 

Care had to be taken to adjust exposure and gain correctly. A very high gain would make the yellow ball appear the same as the 

background, although if the gain was too low, the blue ball would be indistinguishable from any black object in the frame. Different 

lighting conditions could require different gain and exposure, as well as slightly different HSV ranges. This was even more of an issue 

since a separate team member, who had very different lighting conditions (different time of day and lights), needed to test the ball 

detection. Therefore, the ability to adjust gain, exposure, and the minimum and maximum HSV values through the webpage was 

implemented (see Section 4.2) to allow the ball detection performance to be maximised in all conditions. The performance of the ball 

detection was mainly dependent on how well the coloured pixels were detected, so this flexibility was very important. The Mars rover 

must be able to work in different lighting conditions all throughout different times of the day. 

 

4.1.2.3 Bounding box detection 

4.1.2.3.1 Basic detection 

Basic bounding box detection in the starting code [1] was implemented by updating the four boundaries of the box: minimum x and y 

coordinates, and maximum x and y coordinates. The x and y coordinates were computed as valid pixels enter the image processing in 
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accumulators, where x increased from left to right and y increased from top to bottom, so the origin was at the top left corner of the 

frame. For every detected pixel, the bounding box size was increased by updating the values of the bounds as seen in Figure . At the 

start of the frame (sop signal asserted), the bounds are reset.  

 

Figure 14. Basic bounding box detection [1] 

The basic red detection performed badly as it updated the same bounding box for every detected pixel in the image. This meant that it 

was very susceptible to noise as any new detected red pixel in any part of the image would change the bounding box. It could also not 

differentiate different “blobs” or clusters of red pixels as it very simply put every red pixel in the frame in a large box as seen in Figure 

. Therefore, it would still not perform well with noise removal, as only the best estimate of the ping pong ball boundary box should be 

returned. 

 

Figure 15. Basic red detection image 

 

4.1.2.3.2 Multiple bounding box detection 

To be able to differentiate clusters of detected pixels, multiple possible boundary boxes must be detected (where the best one can be 

selected according to specific criteria as seen in Section 4.1.2.3.3). The algorithm implemented had space for storing four different 

bounding boxes (as it would take a lot of memory to store all possible bounding boxes in the image).  

For a given detected pixel, a new bounding box was created with the x coordinate set to x minimum and maximum and the y coordinate 

set to the y maximum and minimum bounds. If the next detected pixel was within a specific distance of the previous bounding boxes 

that had been created, it was added to the first bounding box that was within the threshold distance. This was done by changing the 

bounds of the bounding box to include that pixel. If the next detected pixel was not within the threshold distance to any previous created 

bounding boxes, a new bounding box was created at the new pixel’s coordinates. The ‘close’ signal detected if any new pixels was 

within the distance threshold to any of the four bounding boxes as in Figure . If the new pixel was to the right/left of the bounding box, 

the distance was the sum of the x-difference and y-difference to the bounding box. Otherwise, if the new pixel is below the bounding 

box, it was just the vertical distance from the bounding box maximum y (bottom boundary).   
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Figure 16. Distance threshold calculation code 

The described approach would calculate the bounding boxes of only the upper four clusters of detected pixels, and then it would have 

no space to store any more. Therefore, a way to remove bounding boxes that were clearly worse than others was necessary. Removing 

a bounding box could only be done once the y-distance from the maximum y bound was greater than the threshold distance (as all further 

pixels in the frame would exceed the distance threshold and never update the bounds). At this point, the bounding box could be judged 

against the current best bounding box to decide if it should either be deleted or replaced as a better bounding box. The comparison 

between the current bounding box and the current best bounding box was done using specific criteria outlined in Section 4.1.2.3.3. 

A four-bit number, bb_used, was used to show what boundary boxes are active at any given time. It started at 4’b0000 as no boundary 

boxes were initialised at the start of the frame. When a new boundary box was created, the first unasserted bit in bb_used was asserted 

e.g. 4’b1000. When a boundary box is finished (removed or moved to best bounding box), the corresponding bit in bb_used was set to 

zero. This freed up the space for new bounding boxes to be created by detecting any unasserted (0) bits in bb_used as seen in the code 

in Figure . This meant that there was a maximum of four bounding boxes that could be stored at any given time, although the pre-

processing steps made sure that the number of random clusters of detected pixels was minimised (e.g. noise).  

 

Figure 17. Create new bounding box code 

Multiple bounding boxes can be seen working in Figure . 

 

Figure 18. Multiple bounding box detection 

4.1.2.3.3 Criteria for best bounding box 

The boundary box detection module needed a way to judge whether a boundary box is “better” than the best boundary box. A more 

square-shaped boundary box was preferred as this tended to find the clusters of detected pixels rather than a line of connected pixels 

(that was often just noise). Thus, if the best boundary box was very rectangular (not square), the more square-shaped boundary box was 

preferred. If the best boundary box already had a square shape (within some margin), the current boundary box was decided to be 

“better” if it is square (or square_like in the code) and bigger as well. The algorithm aims to find the biggest and most square boundary 
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box in the image, which performed very well given the pixels on the ball were detected properly. It also performed well in avoiding 

noise by ignoring rectangles and having a minimum size criterion that ensured that the widths of the box were at least 10 pixels (to avoid 

very small square-shaped clusters of detected pixels that were actually noise). Each step of these criteria was pipelined to minimise 

critical path as seen in Figure . 

 

Figure 19. Finding best boundary box code 

The accumulation of pixels in each boundary box was investigated as a criterion. This calculated the concentration of detected pixels in 

the box by diving the number of pixels by the bounding box area, although this resulted in a large increase in the number of resources 

required. The concentration of pixels was calculated as in Figure , although it did not seem to improve the algorithm due to how often 

bounding box change every frame, so it was not used in the final project. 

 

Figure 20. Concentration of boundary box pixels code 

Since red and pink had the same hue with different saturations, there were often detected red and pink pixels on both corresponding 

balls. This worked decently when both red and pink balls were in the image since most detected pixels were on the correct ball, so the 

best boundary box detection algorithm chose the correct ball. Although, for example if only the red ball was on the screen, the red was 

detected well, although there were some pink detected pixels on the red ball, so there was a small pink bounding box even when the 

pink ball was not there (seen in Figure ). This false positive was important to fix as otherwise it looked like there is a pink ball in the 

distance behind the red ball, which would make the 2D map incorrect. This was fixed by checking if red and pink boundary boxes 

overlap within some margin and if so, only choosing the larger bounding box (code in Figure ). 

 

Figure 21. Red and pink differing 

All boundary boxes detected can be seen detected correctly in Figure 62. 
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4.1.2.4 3D position of bounding box 

The bounding box coordinates were used to calculate the approximate distance to the ball and the angle from the centre of the screen 

(described in Section 4.4.3.2). This calculation required the arctangent function and division, which made the NIOS II require too much 

memory, so it was decided to move these computations to the ESP32, which had its own divider hardware and more resources. 

4.2 Dynamic Colour Detection Configuration 

4.2.1 Aim 
The aim is to improve accuracy of detecting obstacles in the vision subsystem. Different lighting conditions may vary the performance 

of obstacle detection. Being able to adjust the settings (exposure, gain, HSV ranges) in obstacle detection dynamically would allow the 

performance to be improved for all lighting environments (see Section 4.1.2.2.3). 

4.2.2 Tuning Configuration from Web Page 
Settings are changed by user on the Video subpage, hence user could monitor to effect with video streaming present on the page. 

 

Figure 22 Video Page Configuration 

Exposure and gain can be incremented and decremented by clicking on the two sets of +/- button at the top. 

Each obstacle colour has its own HSV range, and it can be selected by user by the double slider. The dropdown menu allows user to 

choose the colour, sliders value would then change accordingly. The reset button would reset all HSV values of selected colour to the 

default value. Below table shows the default range for each colour: 

Colour Hue Saturation Value 

Red 0-14 166-255 0-255 

Pink 0-14 51-174 96-255 

Yellow 32-53 144-255 0-255 

Green 85-106 76-179 0-179 

Blue 128-255 0-96 16-176 
Table 1 Default HSV Ranges of Each Colour 

Any change by the user would be detected by client browser and sent to the server. 

4.2.3 Receiving and Sending Changes from Server 
Changes received from the client are saved and queued in the server as an array of objects in the server. The server would then send the 

changes in a TCP packet to ESP32 upon request, possibly containing more than one change. The array of changes would then be cleared 

after sending out the packet, accumulates changes and waits for the next TCP request. 
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Figure 23 Timing of Data Transfer in Server 

As any user inputs do not get to the rover immediately, it takes at most one TCP request cycle, changes are accumulated before sending 

out. For example, exposure is incremented twice and decremented once in one cycle, incrementing exposure by one will be sent to the 

ESP32 instead of 3 separate commands. The ESP32 task receiving TCP packets then places these requests in a FIFO queue to be read 

and transmitted by the FPGA UART task. 

 

4.3 Video Streaming Subsystem 

4.3.1 Aim 
The aim is to enable video streaming by transmitting picture frames from the FPGA to the ESP32 before being transmitted by TCP/IP 

for displaying. The initial aim was to transmit RGB colour images with 4-bit colour depth (12-bit pixels) at VGA resolution (640 by 

480 pixels), matching the VGA display output. Ideally minimal processing should be required by the Nios II processor, ESP32 and the 

Server to display the images. 

4.3.2 Approach 
To test that the ESP32 can correctly transmit images, the Test Pattern Generator II IP Core was used to produce a colour bar pattern (0, 

Figure ). This allowed for testing using only the ESP32 and DE10 FPGA without the need for any camera hardware. Icarus Verilog was 

used to simulate Verilog designs and testbenches before use in the FPGA. 

For the ESP32 to obtain an image from the FPGA, an appropriate communication protocol would be needed. The FPGA has IP blocks 

for UART, I2C and 3-wire SPI. However, these blocks require interfacing with the Nios II processor, which is not ideal. An Avalon-ST 

SPI core is also provided, however further processing of the transmitted data would be needed to separate Video and Control Avalon-

ST packets, as well as remove Idle packets inserted during the SPI transfer process [8]. This block also does not support backpressure 

which means the Avalon-ST and SPI clocks would need to run at similar frequencies. 

It was decided that the Inter-IC Sound protocol (I2S) would be the most suitable for the task. I2S was originally designed to transmit 

digital stereo sound. This protocol is relatively simple, consisting of a bit clock (BCLK), word select clock (WSCLK) and data line (0, 

Figure ). This makes it simple to create hardware logic to supply the signals involved, without using the Nios II CPU. The ESP32 I2S 

driver uses a Direct Memory Access (DMA) controller to constantly listen for signals and read data into memory without involving the 

ESP32 CPU. 

Although the ESP32 has a camera driver that makes use of I2S to receive camera signals [9], the driver is fixed at reading 16-bit words 

and requires the use of 8 GPIO pins for data. It also supports only a limited set of camera models and does not include documentation 

such as timing information for getting it to work with other devices. Hence using the raw I2S driver would be more suitable to read 

directly from the FPGA. 

However, I2S data words need to be transmitted bit by bit instead of pixel by pixel. Hence extra logic is needed to read pixels and 

transmit them. Since the frames would likely be read by the ESP32 at a much lower rate than the stream of video packets in the vision 

processing pipeline, the Clocked Video Output (CVO) IP blocks are suitable since they provide pixel by pixel video output at a user-

controlled clock speed. 

The I2S driver allows for choosing between 8, 16, 24, 32-bit words and single or dual channel (1 or 2 words per WSCLK cycle) with a 

selected sampling frequency (𝑓𝑠) [9]. A master clock (MCLK) frequency can be provided and is needed for the ESP32 to work in I2S 

‘Slave’ mode [10]. 𝑓𝐵𝐶𝐿𝐾  would ideally be calculated as 

𝑓𝐵𝐶𝐿𝐾 = (𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ∗ (𝑁𝑜 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) ∗  𝑓𝑠 
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However, due to hardware constraints the ESP32 needs 𝑓𝐵𝐶𝐿𝐾  to be an integer divisor of 𝑓𝑀𝐶𝐿𝐾 , and hence readjusts 𝑓𝑠 to allow 𝑓𝐵𝐶𝐿𝐾  to 

match the constraint. Fortunately, the CVO IP block has no lower bound for its video output frequency (𝑓𝐶𝑉𝑂_𝐶𝐿𝐾), and all the above 

values can be adjusted as appropriate. MCLK is produced by the ESP32’s PLL and can only be outputted on GPIO 0, 1 or 3 (clk, Tx0 

or Rx0 respectively) [11]. Only the latter 2 connect to the FPGA. 

4.3.3 Using the I2S Driver 
Since each pixel is 12 bits wide, a word length of 24 bits (dual channel) was selected, such that 4 pixels are sent during one WSCLK 

cycle. As it was not possible to use the ESP32 PLL output as input to the FPGA PLL (due to routing constraints), the required 𝑓𝐵𝐶𝐿𝐾  

was generated with the FPGA PLL from the 50 MHz FPGA Main Clock. A value of 2.5 MHz for 𝑓𝐵𝐶𝐿𝐾  was chosen. This meant setting 

𝑓𝐵𝐶𝐿𝐾  to 2.5 MHz by setting 𝑓𝑀𝐶𝐿𝐾 = 20 𝑀𝐻𝑧, 𝑓𝑠 = 48 𝑘𝐻𝑧 (note that 𝑓𝑠 gets readjusted to 52083 Hz). This value was chosen as it is 

comparable to 𝑓𝐵𝐶𝐿𝐾  if 24-bit stereo sound sampled at 48 kHz was being transmitted. 

A Verilog module was used to take in pixels and output their individual bits, as well as generate other signals CVO_CLK and WSCLK. 

The ESP32 would signal the FPGA by sending a high Clear To Send (CTS) signal and the module would start sending on the next frame. 

Blocking the BLCK signal to the ESP32 causes it to stop reading in data, since the I2S driver essentially operates as a shift register to 

store bits on the rising edge of BCLK. Hence data is only sent to the ESP32 during the frame following the CTS signal, and stops during 

periods of horizontal and vertical blanking. 

This video data is then read into a buffer by the DMA controller, and can then be read. Given the large frame size (460 kB), a portion 

of a frame was read and sent by TCP to a computer to be plotted with Python. To help with debugging, an image consisting of only 

white pixels (RGB = 255, 255, 255) was sent. The following image (Figure ) was obtained. 

 

Figure 24. Image obtained when sending only white pixels. 

Since the I2S data width, 24 bits does not occupy an entire 32-bit word, the I2S driver in single channel mode inserts a padding byte 

when storing to memory [12]. In dual channel mode the driver strangely inserts a padding byte in every 8 bytes. This causes subsequent 

4-bit RGB values to be shifted, producing the colour pattern shown. 

4.3.4 Obtaining Clear Images 
To fix the problem, 16-bit I2S words were selected instead, and the design was modified to ‘pack’ four 12-bit pixels into three 16-bit 

words. This correctly produced a white image when white pixels were sent. When tested with the colour bar test pattern (0, Figure ), the 

following image was produced (Figure ). 

 

Figure 25. Image obtained when sending colour test pattern. 

The black and white bars, which have uniform R, G and B values can be seen while the others do not appear clearly. This was because 

the ESP32, having a little-endian CPU, reorders every byte in a 32-bit word [13]. Since each byte contains 2/3 of a pixel, this reordering 

further shuffles pixel RGB values around and distorts colour. The best solution would be to reorder groups of 4 bytes on the FPGA 

before entering the ESP32, to minimize CPU processing on the ESP32 and Server. However, this would make the design more complex 

given that 8/3 pixels = 4 bytes. Hence it was decided to use 8-bit monochrome images instead (Figure ). This would simplify the Verilog 

design, and prevent colour being affected should one byte be incorrectly transmitted, since now 1 pixel = 1 byte. 

 

Figure 26. Visualized 8-bit monochrome image obtained. The effects of little-endian byte ordering can be clearly observed. 

The byte ordering was fixed by reading from a CVO II IP block, which supports transmitting 4 pixels in parallel, and reversing the byte 

order within the FPGA. Note that the Colour Plane Sequencer II IP block required for converting between Avalon-ST streams with 1 

and 4 pixels in parallel is only available on Quartus 16.1 and later. 

Up till this point the image had a ‘diagonalization’ effect where the start and end of a line did not match. This was because  a small 

fraction of the data was lost during transmission, which happened because the FPGA-generated PLL clock was not in sync with the 
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ESP32 MCLK. This was fixed by simply feeding the MCLK signal into the FPGA through the Rx0 pin and using a Verilog counter to 

produce the BCLK signal, instead of the FPGA PLL. Printing debug statements during development still works with the Tx0 pin left 

untouched. The final Verilog code used can be found in the appendix (0, Figure ). 

4.3.5 Transmitting bitmap files 
At full VGA resolution, the ESP32 does not have enough RAM left to fit a full image frame. After reducing the image size to QVGA 

resolution (320 by 240 pixels), each frame is just 77 kB, which the ESP32’s RAM can easily accommodate. This was done using the 

Scaler II IP Core with a simple Bilinear algorithm which consumes less logic elements. The side effect of this is that sharp lines may 

become blurry. However, the video stream serves to give the user a sense of the Rover’s bearings for decision making, and increasing 

the image quality beyond a certain point brings little benefit. 

When taking into account horizontal and vertical front and back porches, each frame outputted by the CVO II block is 556 by 280 pixels. 

Given the CVO_CLK frequency, each frame takes 0.498s to be read. Hence the video is clocked out at about 2 FPS. 

Ideally colour images would be desired while maintaining 8-bit pixels, to allow the user to spot different colored obstacles. The FPGA 

can convert RGB values to YCbCr values with subsampling [14], where for example half of each pixel contains a luminance (Y) value, 

and the other half alternates between Cb and Cr chrominance values, known as 4:2:2 subsampling. Unfortunately, such 8-bit colour 

picture formats are uncommon, the closest being the CLRJ format [15], with no easy method of displaying images without further 

processing. 

Fortunately, the BMP file format supports a user defined colour palette for 8-bit pixels [16]. This allowed the 3-3-2-bit RGB colour 

palette (0, Figure ), used on some early computers, to be generated and then embedded in the bitmap file header. This increases the 

transmission size by 1kb but minimizes further server processing as the transmitted images can readily be displayed. The image of the 

test pattern obtained is shown (0, Figure ).  

4.3.6 Video Pipeline Integration 
To integrate the Video Streaming functionality into the current Video Pipeline, a second Avalon-ST source was added to the Image 

Processing IP block. The Video is sent to both outputs, but will only accept backpressure from one, selected through a physical switch 

on the FPGA. The Video Pipeline following the image processing is shown below (Figure ).  

 

 

However, the code for video streaming did not fit with the full vision bounding box project. The largest memory usage was due to the 

on-chip memory, as well as the clocked video output Figure . Thus, the on-chip memory was minimised (to still allow UART) and the 

VGA output was removed for the video streaming section since only the clocked video output to the ESP32 was required to do video 

streaming. Gaussian blur also required a large amount of memory to store two rows of data for each of the five colours (see Figure ). 

Thus, the vision subsystem was split into two projects: one with the full bounding box detection (with VGA output) and one with video 

streaming functionality to the website (with no blur in the detection and no VGA output). 

4.3.7 Receiving Bitmap Files on the Server 
As the bitmap takes up a majority of the TCP transmission bandwidth, sharing the same TCP port for communication of data and video 

limits the transmission speed. A separate TCP server port is created, dedicated for video streaming. However, during testing, it was 

found out that hosting the TCP server port in the Node.js main server alongside with other ports slows down the main server. Hence a 

separate Python TCP server is created.  
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Figure 27. Video Pipeline split into two after image processing.  
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Figure 28 Video Streaming Server Structure 

The server reads 77880 bytes, the size of one bitmap image, and saves as an image in the server directory. The “main” server would 

then reads the image and sends to client upon request. This make the video streaming server totally independent of the “main” server, 

avoid slowing down or fight resources between two servers.  

1. def savebitmap(data): 
2.     f = open('bitmap.bmp', 'wb') 
3.     try: 
4.         f.write(data) 
5.     finally: 
6.         f.close() 
7. data = connection.recv(77880, socket.MSG_WAITALL) 
8. if len(data) == 0: 
9.     break 
10. print('received data of size %d', len(data)) 
11. savebitmap(data) 

4.3.8  Performing Video Streaming on Web Page 
The webpage was originally designed to use available video streaming protocols (HLS) to display real-time video from the FPGA 

camera. However, bottleneck sits in the TCP communication between ESP32 and server, it can only support at most 1 FPS. Utilising a 

video streaming protocol could not improve the video quality and even slows down the server. 

An image slideshow approach is used instead to display the video. Client request new image data every 1 second and displays on the 

webpage. Data are sent as a Base64-encoded string as HTML supports Base64-encoded image. 

As bitmap image received from ESP32 is 8-bits per pixel, while standard bitmap image is 32-bits per pixel. Most browsers do not support 

8-bit bitmap, hence images are converted to 32-bits in the server before sending to client. 

1. var file; 
2. try { 
3.     file = fs.readFileSync('bitmap.bmp') 
4. } catch (err) { 
5.     return; 
6. } 
7. var bmpData = bmp.decode(file); // 8-bit image 
8. var rawData = bmp.encode(bmpData); 
9. base = Buffer.from(rawData.data).toString('base64')  
10. response.json({ 
11.     bmp: base 
12. }) 

As mentioned in the previous section, bitmap image received by the server would be stored in the directory. Hence upon client request, 

the server would first read the image, decode it from the 8-bit image and encode it as 32-bit. Finally, data is encoded as base64 string 

and sent to the client. 
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4.4 Control Subsystem 

4.4.1 Overview 

4.4.1.1 Aims and Responsibilities 

The aim of the control system is to communicate with the each of the other subsystems, Drive, Power, Vision and Command. This 

involves using physical communication protocols over wires for the first 3 subsystems and Internet Protocols for communicating with 

the Command subsystem. Communication with the Power system was not implemented but is discussed in this report. 

4.4.1.2 Environment 

The control system is handled by an ESP32. This was programmed using the ESP-IDF framework and uploaded with PlatformIO. The 

ESP32 makes use of the FreeRTOS kernel, integrated into the IDF, to schedule and manage tasks. This is akin to a computer running 

many processes simultaneously that can communicate with each other using Queues, Semaphores and Mutexes [17]. 

4.4.2 Communication 

4.4.2.1 Overview 

The diagram (Figure ) shows the data flow to/from and within the ESP32, and the different components within the ESP32 that interact 

with the data. The 3 UART drivers are used to communicate with Drive, Vision and Energy. The I2S driver is used to obtain video 

frame data, with more details given in section 4.3.  

 

Figure 29. ESP32 Communication. Pin numbers where the ESP32 connects to other peripherals are shown. Internal communication within the 

ESP32 is performed with Queues, denoted Q1 to Q5. 

4.4.2.2 Queue Overview 

Queues are created using FreeRTOS functions to share data between tasks. They can either be FIFO queue with items placed and 

removed; or a mailbox with space for a single item that may not be removed when read. Video frame data is written to a buffer by the 

I2S driver which the TCP task accesses. A mutex controls which task is allowed to access this buffer. 

Queue Purpose Type 

Q1 Send Rover coordinates from Drive to Server and Automation Mailbox 

Q2 Send movement commands from Automation/Server to Drive Mailbox 

Q3 Send HSV adjustments from Server to FPGA FIFO queue with 20 slots 

Q4 Send target coordinates to Automation Mailbox 

Q5 Send obstacle data from FPGA to Automation and Server Mailbox 
Table 2 Queues used to transfer data within ESP32 

4.4.2.3 Programming Structure 

Using the FreeRTOS Kernel, different tasks can be created and assigned to run by the Kernel. Blocking events such as delays are used 

to transfer control back to the Kernel which can then assign a different task to unblock and run. An example of a FreeRTOS task is 

shown below. 
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1. void read_uart(void * params) {  
2. setup_uart(); 
3.  while (1) { 
4.   read_uart(); 
5.   vTaskDelay( 1000 / portTICK_PERIOD_MS ); 
6.  } 
7. } 

This task includes a never-ending a while loop, in which the blocking statement ‘vTaskDelay’ blocks function execution until 1000ms 

later, during which other tasks may run. Additionally, each task is also created with a certain priority, which the kernel uses to decide 

which task to prioritize running. Both the delay timing and task priority allow for control over how often a certain task runs.  

4.4.2.4 Task Priorities and Periods 

The following priorities and delay intervals were set for different functions 

Task Period (ms) Priority 

Send/Receive TCP Command Packets 1000 7 

Send TCP Video Packets 1000 2 

Read Video frame via I2S 1000 2 

UART Communication with Drive 1500 6 

UART Communication with FPGA 1500 3 

Automation Tasks 1000 6 
Table 3 ESP32 task priorities 

Communication with the web server to obtain remote commands and send them to the drive system takes higher precedence, while video 

streaming which uses more network bandwidth was set to be lower.  

Although a function can also be set to run on a specific core, the default setting was used where kernel tasks and WiFi events run on one 

core while user functions run on the other. This should prevent any slowdown in TCP transmission caused by the CPU being busy with 

other tasks. 

4.4.3 Automation 

4.4.3.1 Overview 

An aim of the rover is to be semi-autonomous, with the rover able to perform simple obstacle detection and position navigation. This 

makes use of available data from both the Drive and Vision subsystem, and complements the rover’s ability to allow the user make high 

level decisions through the video streaming and remote control. 

4.4.3.2 Obstacle Avoidance 

To avoid obstacles, the ESP32 would need to obtain the position of any obstacles in the camera’s view. The ESP32 gets coordinates of 

bounding boxes for each of the ping pong ball colours via UART. Since the size of the ball on the screen is inversely proportional to its 

distance, and each ball is of the same width, it was determined that the distance of the ping ball could be calculated as 100𝑚𝑚 ∗
256𝑝𝑥

𝑤𝑖𝑑𝑡ℎ
, 

since it was determined that a 256px length ball on the screen was 100mm away from the rover. The angle of the ball is also calculated 

based on its x-position. It was also determined that the rover needs to have a ball move just out of the camera view for the rover to avoid 

hitting it. Hence the rover will determine whether to turn left or right after considering all obstacles that are within 600mm. These 

commands are directly sent to the same queue that the Drive UART communication reads from. 

4.4.3.3 Position Movement 

It follows that the ESP32 can move to a certain coordinate given its current coordinate and the direction it is moving. This allows it to 

move to a target position while avoiding obstacles. In order to determine the direction travelled, the rover first checks to see if the last 

move made was either forwards or backwards, and if not makes it move as such to determine direction. As previously discussed the 

rover also avoids any obstacles encountered. 
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4.5 Command Subsystem 

4.5.1 Overview 
The command subsystem aims as a remote controller and dashboard monitor of the rover. It sends manual command to the rover and 

receives real-time data from other subsystems on board to display on the webpage. It communicates with the control subsystem via the 

Internet, TCP/IP is selected as the communication protocol. 

4.5.2 Front-end Web Page 

4.5.2.1 Web Page Components 

React is chosen as the front-end framework due to its component nature and DOM property. Its largely supported libraries and wide 

community is also a factor for choosing this framework. 

Several react components libraries are called in the webpage for easier web development, including Material-UI, React Icons, Chart.js, 

ApexCharts.js, etc. Line charts, sliders, buttons, dropdown menu, progress bars in the web page are made possible with the libraries. 

The 2D map is made from a scatter chart, containing data points of the obstacle positions, rover past and current position. As legend and 

x,y axis are disabled, the origin (0,0) is shown as a black spot on the map. 

 

Figure 30. 2D Map on Web Page 

Bisque circles represent positions of obstacles, red circles represent positions of the rover, and the red square is the current position of 

rover. Rover position data points are connected with a grey line, sorted by time, to represent the trail of rover. Each data point on the 

map also has its tooltip showing the x,y coordinates, rover positions’ points also display the time data point was recorded. 

4.5.2.2 Routing 

React Router is used for routing between subpages, instead of fetching independent HTML pages for different URL. HTML would only 

fetch once within in the router [18]. It allows a more consistent UI within subpages and generally a faster response when jumping 

between pages. There is a home page, and 5 subpages (Battery, Drive, Controller, Video, About Us) in the dashboard which are all 

within the react router.  

4.5.2.3 Controller 

3 control modes are available for the rover, Direction, Position and Exploration. Direction gives the rover exact instruction on moving 

direction, Position gives the rover a target coordinate and the rover would move to it, and finally Exploration allows the rover to move 

randomly around. Please refer to the Control Subsystem section for detail on board implementation for each mode. 

 

 

Figure 31 Direction Control Controller 
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3 modes are available as tabs on the Control page, with simple tooltip describing what does each mode does. 

In the Direction mode, 5 control buttons (left, right forward, backward, stop) indicated by icons are used to remotely control the rover. 

Clicking on the buttons would enable it, click again to disable it. An array of Boolean values is stored in client to keep track of which 

button is enabled, and shows as a BlanchedAlmond colour on the screen. If none of the buttons is enabled, it is default to have the rover 

stopped. In the above screenshot, the rover would be moving forward. 

 

Figure 32 Position Control Controller 

In the position mode, user inputs the target x and y coordinate on the form. A blue dot would be shown on the map as a preview, only 

upon clicking the submit button the coordinate would be sent to the server. The stop button, as suggested by the name, would stop the 

rover. Clicking either button triggers an alert popped out to indicate data successfully sent out. 

In the Exploration mode, there is only one button that toggle between starting and stopping the rover. 

4.5.2.4 Data 

All data displayed on the webpage is fetched from the server using HTTP GET method. Each page fetches its data independently from 

different server route, such that only data needed will be fetch and allow varying fetch interval. Details on server route will be explained 

in the server section. Fetch interval of each page are stated in Table 4 Data Fetched in Each Web Subpage 

Client data are stored as React state object, a special object type used by the React framework. When the value in the state object 

changes, the component will re-render, updating the webpage without reloading. State objects are updated with data received from the 

server [19]. Below table shows data fetched for each page. 

 fetch interval (s) Data 

Home Page 10 Battery state of charge and charging state 

Rover speed 

Battery Page 5 Battery current and historic state of charge, state of health.  

Charging/discharging voltage of 2 batteries 

Power-voltage graph data. 

Drive Page 5 Rover speed, steering direction 

Motor notification 

Rover current position, obstacles’ positions 

Control Page 10 Rover current position, obstacles’ positions (only fetch when user 

chooses position control mode) 

Video Page 1 Image to be display as a frame in video streaming 
Table 4 Data Fetched in Each Web Subpage 

2D map on the dashboard shows past positions of the rover, allowing user to monitor the trail of the rover. All historic positions are 

saved in the client. Only positions after the web page has been started will be stored and displayed on the map. The ‘clear’ button at top 

right corner of the map clears all the past positions of the rover. All past positions since the server has started can be obtained as a CSV 

file by clicking the ‘download’ button.  Clicking the button would activate client to fetch a CSV file from the server and download it in 

the browser. 

On the Controller page, user commands are sent to the server on change by HTTP POST method. When user clicks a button in direction 

and exploration mode, change is triggered, and an update is sent to the server. On the other hand, in the position mode, data will only 
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be posted when the stop or submit button is pressed. Posting command to server is independent of fetching, hence to ensure timeliness 

of commands.  

Setting in the Video page, like in the Controller page, data is posted once change has occurred. Moreover, to ensure consistency of HSV 

values over clients, value of HSV is fetched from the server. As each colour has different value, data is fetched when user selects a 

different colour in the dropdown menu. Pressing the reset button would also triggers fetching of default HSV values. Details please refer 

to Dynamic Obstacle Detection Configuration section. 

4.5.2.5 Weather 

The current weather of London is shown on the home page. 

 

Figure 33 Weather Card on Home Page 

Data is obtained from Open Weather Current Weather Data API where current weather data could be obtained by fetching from a 

certain URL [20] .   

4.5.3 Back-end Server 
Node.js is chosen as the backend environment. It offers plenty of libraries and APIs on communication, and is designed for real-time 

web applications. The language itself being event driven makes it more ideal to handle multiple communication channels concurrently 

in comparison with sequential languages such as Python. 

The server acts as a two-way communication channel for data from the rover be able to display on the front-end webpage and remote 

command from user reaching the rover.  

4.5.3.1 HTTP port 

2 HTTP ports are established in the server. 

Port 3000 returns HTML file as client request. Data are static and should only be fetched once from the client. The HTML files are 

generated from above-mentioned React components. 

Another port is established at 5000, client fetch data from this port. The call-and-response nature of client-server model allows the server 

only response with data when client requests. Several paths are available for client to only get or post data it needs. Below table shows 

the method, data and corresponding client page of each path. 

Path Method Data Client Page 

/data GET Battery state of charge 

Rover speed 

Home Page 

/battery GET Battery current and historic state of charge, state 

of health.  

Charging/discharging voltage of 2 batteries 

Power-voltage graph data. 

Battery Page 

/drive GET Rover speed, steering direction 

Motor notification 

Rover position, obstacles positions 

Drive Page 

Control Page (map in position 

control) 

/drivedata GET CSV file on past rover positions Drive Page (download button) 

/position POST Any user control command 

e.g. moving forward 

Control Page 

/video GET Image encoded in Base64 string Video Page 

/videosetting POST Manually set obstacle detection configuration 

GET Value of each colour’s HSV range 
Table 5 Response Data for Each HTTP Path 
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Please refer to Video Streaming section for details on implementation of video and Dynamic Obstacle Detection Configuration section 

for manual setting. 

/videosetting GET method returns different data according to parameters, as data is fetched within each slider.  

1. app.get("/videosetting/:color/:type", (request,response) => { 
2.     var rtn = null; 
3.     // videocolor is a local variable stored in server 
4.     for (let i=0; i<videocolor.length; i++){ 
5.         if (videocolor[i].color === request.params.color){ 
6.             rtn = videocolor[i] 
7.         } 
8.     } 
9.     if (rtn === null) return; 
10.     rtn = rtn[request.params.type]; 
11.     if (rtn === undefined) return; 
12.   
13.     response.json({ 
14.         value: rtn 
15.     }) 
16. }) 

color refers to the colour user is adjusting and type refers to either hue, saturation or value. 

4.5.3.2 TCP port 

A TCP port at 2000 is established for communication between ESP32 and the server. Received bytes are first parsed from JSON format 

to an Javascript object, then update the data in server accordingly. User commands stored in server are also parsed into JSON format 

and send to the ESP32. Please refer to Section 4.8 for details on data being sent and received. The TCP port also follows a call-and-

response structure, packet will only be sent to the ESP32 when it receives a packet. The ESP32 initiates the communication to avoid 

ESP32 being overloaded by data. 

Another TCP port is established at 2001, dedicated for video streaming communication. Please refer to Video Streaming section for 

details. 

4.5.3.3 Data 

Data are stored as local variable in the server, updates when it receives packets from ESP32 and sends to the clients when there is a fetch 

request. As the server is expected to run 24/7, offline database is not set up. Data are stored locally and will be lost when the server is 

stopped. An exception would be information about the energy subsystem. Data is not obtained during run-time in this project due to 

hardware limitation, they are saved as csv file in the server beforehand. At the start of the server, it reads and parse the csv file and store 

as local variable. 

4.5.3.4 Obstacle Position Calculation 

Positions of obstacles can be calculated given the direction and angle of obstacle from the rover and the rover’s current direction. The 

rover’s facing angle also needs to be known to calculate the x,y coordinates of the obstacles to be displayed on a 2D map. 

The facing angle of the rover can be calculated by obtaining the slope of two consecutives position given that the rover is moving 

forward. Hence calculation of rover is only done when the rover is moving forward.  

Moreover, due to measurement error, the calculated position of a same obstacle might vary a bit. Hence certain error tolerance is allowed, 

which is a 100mm square. If a previous-calculated obstacle of same colour is within error range of the new obstacle, the previous obstacle 

positions would be updated with the average of these two values, else a new obstacle would be created. 

 

 

Figure 34 Obstacle Position Flow Chart  
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4.6 Drive Subsystem 

The purpose of the drive module is to control and measure the distances of the mars rover, and control the direction it facing to. The 

control module will implement the instruction received at Tx Rx ports, and send the position back. The block diagram shows below is 

the overall structure of the control module.  

 

Figure 35 overall structure of drive system 

4.6.1 Control Principle 
The Arduino Nano Every controls the duty cycle in the SMPS, thus control the voltage input to the motor. By changing the value and 

sign of the voltage to H-bridge, we could achieve different mode for the rover, for example, turning left/right, moving forward/backward, 

with different speed.  

4.6.2 Optical sensing 
In this part, the Arduino will communicate with optical flow sensor through SPI port. The main function in this part is 

"mousecam_read_motion" which will read delta x and y in optical sensor into dx and dy in Arduino.  This function will be called in 

each loop. By accumulate dx and dy, the total_x and total_y can be found. Later on, this information will be send to other 

microcontrollers through serial communication port(Tx, Rx, GND). Codes can be found in appendices 10.4.1.  

4.6.3 Difficulties in optical sensing:  
After integrating the optical and drive codes, we find that the current and voltage PID controller perform badly, which turn to have a 

noticeable delay and large oscillation. After investigation, we find that this is caused by the time delay in optical flow sensor, and time 

delay in Arduino main loop. Since the optical sensor have a fixed delay in each read and write, the only way to cancel the delay is to 

cancel  the delay in the main loop. After doing this, the controlled duty cycle perform better and faster, and there are no noticeable 

oscillation appears.  

Also, the range for total_x and total_y originally is about -200 to 200. This is because that the data type of total_x1 and total_y1 are int. 

The size of int in Arduino nano only have 16 bits, so the range for total_x1 and total_y1 are -32768 to 32767 [21]. Thus, total_x and 

total_y is restricted between -20(-32768/157) and 20(32767/157). This problem can be solved by changing the data type from int to long, 

which have 32 bit size. [22] 

4.6.4 Drive control 

 

Figure 36 motor code structure 



   

 

26 

 

The overall structure of the distance control can be seen in the graph above. There are 7 instructions can be read from serial 

communication port. For example, when the decoder received a stop instruction, the voltage in the motor will be set to zero, so the mars 

rover will stop.  When the decoder received a turn_left instruction, DIRRstate and DIRLstate will be set to LOW, so the mars rover 

turning in anticlockwise. 

 

Figure 37 logic of moving forward method 

4.6.4.1 Moving forward: 

One most important instruction is “Moving forward”. Since the mars rover can only moving in one direction, we just need to consider 

the forward scenario, then manipulate the angle to cover other directions. The main logic for this instruction is shown in the right figure 

above. When decoder received instruction such as “Moving forward 30 cm”, the desired distance will be recorded. By comparing the 

current location with the desired one, the ey (difference between desired y and current y) will be recorded. When ey is large, the voltage 

of the motor should be high, so it will approaching the desired location faster. When ey is small, the voltage of the motor should be low, 

so the mars rover can have a better control of the speed, and not missing the target y. 

Following this logic, serial several voltage stage can be set below.  

Voltage mode(stage)  Range of ey Voltage (Max 1024) Action 

1 0 to 1 0 Moving forward 

2 1 to 10 400 Moving forward 

3 10 to infinite 500 Moving forward 

4 -2 to 0 400 Moving backward 

5 -infinite to 2 500 Moving backward 

Figure 38 Voltage Stages for Moving Forward 

Since there are delay in data transmission from optical sensor to Arduino nano, if set the voltage to 0 only when ey=0, the mars rover 

will keep oscillating and never stop. So we need to set an acceptable error for ey, in order to avoid oscillation.  In this case, Voltage 

will be set to 0 when ey smaller than 1cm. If it miss the desired y due to inertia, the motor will moving backwards slowly instead, until 

ey smaller than 1.  

The codes in Appendices 0 shows the application of those 5 modes in this process.  

4.6.5 Angle control 

Controlling the direction of the mars rover is very similar to controlling the distances of the mars rover, except that the “current angle” 

feedback come from the camera, not optical sensor. The camera will send the current angle and desired angle together with the turning 

instruction, the difference between those two angles is noted as angleD. Thus, according to the vslur of angleD, the voltage stage can 

be set as follow: 

Voltage mode(stage) Range of angleD Voltage (Max 1024) Action 

1 0 to 5 0 Turning anticlockwise 

2 5 to 20 400 Turning anticlockwise 

3 20 to 90 500 Turning anticlockwise 

4 90 to infinite 600 Turning clockwise 

5 -0 to -5 0 Turning clockwise 

6 -5 to -20 400 Turning clockwise 

7 -20 to -90 500 Turning clockwise 

8 -90 to -infinite 600 Turning clockwise 

Figure 39 Voltage stages for Angle Control 
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The codes in appendices 10.4.3 shows the application of those 5 modes in this process. The graph bellow is the codes for angle 

control. There are also other instructions such at turn left and turn right, reset coordinate. Which just simply set DIRRstate and 

DIRLstate to LOW or HIGH without feedback control, and reset the total_x and total_y to zero. 

 

 

Figure 40 initial decoder key map 

One way to decode the instruction is passing different opcodes or specific number in char type to each instruction. A very simple 

decoder key map is list below. 

4.6.6 Communication 
When serial monitor receives an instruction with the first char called “1”, the Arduino will notice that it is an “moving forward” 

instruction. “findsubchar” function will return the rest number after “1” which is the value of desired distance, thus, ey can be found. 

The code on the left is how this decoder applied.   

 

4.7 Power Subsystem 

4.7.1 Aim 
The aim of Power subsystem is charging the batteries by PV panels, and in case battery data, e.g., battery voltage, the State of Charge 

and State of Health are constantly being monitored. The system then should be connected with Drive for supplying power to the whole 

rover, and connected with control for data transmission. However, these cannot be physically implemented. 

  

4.7.2 Overview 

 

Figure 41 Power subsystem overview 
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By considering the fact that the space is limited on rover, the energy module cannot be physically integrated and tested by integration, 

as well as lack of sensors to implement more accurate measurement methods, the following integration method has been implemented. 

Figure The PV will perform as a charging station using MPPT algorithm to charge the parallel balanced batteries. The OCV of batteries 

will then be measured, together with the SoC which is achieved by constructing a lookup table from data collected in previous coulomb 

counting method. During charging process, the actual capacity available will also be recorded, together with number of charging cycles 

to determine the SoH status of battery. 

After parallel balanced batteries have been charged, the SMPS at energy side will be set by mode Boost, connecting to Buck mode 

SMPS at Drive side to supply power for the rover. 

The details of design and implementation will be discussed below. 

4.7.3 Photovoltaics Panel 
The Photovoltaics performs as charging station for batteries due to physical space limitation on Rover to add in another SPMS, as well 

as the fact that batteries cannot charge and discharge simultaneously to provide power (since current provided by 4 parallel connected 

PV is too small to operate the rover), making it less sensible to integrate PV with batteries onto the Rover. 

4.7.3.1 Characterization 

Here is the characterization IV curve for PV Figure. We implement this by using Synchronous Buck mode with duty cycle sweep from 

0 to 1. The result shows the characteristic PV panel performance, with maximum power output around the curvature. It is worth noted 

that the part below 4V does not show the characteristic behavior. This is due to measuring voltage through potential divider at port A 

will also draw some current, i.e., having the voltage drop, which in case causes PV voltage cannot decrease below this point. The MPPT 

algorithm then applied to the PV panel to keep power output at the maximum point. 

 

Figure 42 Plot for PV characterization 

4.7.3.2 MPPT 

1. if(input_switch == 1 && i < 1.00){ //Start condition 
2.    if(power > power_previous){ // Compare power 
3.       if(V_pd >= V_pd_previous){  // Compare voltage 
4.         i -= 0.01;} //increase voltage if on LHS of MPP 
5.       else{ 
6.       i += 0.01;} //decrease voltage if on RHS of MPP 
7.     } 
8.     else{ 
9.       if(V_pd <= V_pd_previous){ 
10.       i -= 0.01;} //increase voltage if on LHS of MPP 
11.       else{ 
12.       i += 0.01;} //decrease voltage if on RHS of MPP 
13.     } 
14. } 

Figure 43 Code for MPPT 
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Figure 44 Plot for MPPT curve 

The MPPT algorithm is implemented by comparing the current power with the previous one, together with voltage comparison to locate 

the current operating point of PV. If the current power is greater than the previous one, and the same applies to the voltage, then that 

means we are at the left-hand side of maximum power point. On the other hand, if in this case voltage is less than the previous one, this 

means we are at the right-hand side of maximum power point and the corresponding adjustments to the duty cycle are applied. The result 

shows the PV panel power varies around the maximum power point [23] [24]. 

 However, there are limitations in our method. Since the IV curve is influenced by the irradiance level and temperature, the lack of 

sensors to measure those factors may result in inaccurate IV curves compared with the environment on the Mars. In addition, both PV 

voltage and current measuring methods are indirect, and values are corrected according to SMPS component parameters, which would 

result in inaccurate recorded values. 

 For PV charging with batteries, it is hard to implement CC or CV method in this case due to the conflict in PWM generated by PID 

controller and MPPT. Also, the small amount of current supplied by 4 parallel connected PV panels making it less sensible to implement 

CC or CV methods. 

4.7.4 LiPO4 Battery  

4.7.4.1 Characterization 

 

Figure 45 Plot for Battery Characterization 

The entire charging and discharging process for battery is shown in figure. The rough battery capacity estimation can be achieved by 

calculating total discharging amount in discharging state, through multiplying constant discharging current with the time in discharge 

state. 

 Moreover, it is worth noted for the chemical reaction inside the battery. LiFePO4 as cathode (+) and Graphite as anode (-). During 

discharging process, the Li+ ion will move from anode to cathode through electrolyte, and electron from anode will move to cathode 
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through the outer electric circuit. During charging process, the Li+ ion will move from cathode to anode through electrolyte, and electron 

from cathode to anode through the circuit [25]. 

4.7.4.2 Balance 

The batteries are balanced in parallel. Due to the limitation of discharge circuit within battery board, in which voltage decreases very 

slowly and it is hard to use that for discharging lower capacity cells. Instead, we are using active balance method, in which we stop 

charging or discharging whenever the lowest capacity cell is fully charged or discharged. 

 

 

Figure 46 Figure Design for battery balance algorithm 

Figure 76 Code for Parallel Balance 

In this case, the charging process is not continuous as the voltage of individual battery have to be constantly monitored. The battery is 

firstly charged for 1 minute, followed by 30s rest before having a relatively more accurate OCV measure. In addition, due to parallel 

balance nature, we cannot implement Coulomb counting method to monitor its State of Charge, while only implementing the voltage 

look-up table method instead, which would be a relatively inaccurate method. However, if more equipment such as current sensor is 

provided for individual battery board, the parallel balance SoC estimation would be more accurate. 

In this case, the reason for us to use parallel balance instead of serial balance is mainly due to the power supplied by PV panel. Since 

the 4 parallel connect PV with Halogen as light source can only supply current with maximum 70mA, it’s even less effective for us to 

change the configuration into serial battery connection in Boost mode.  

4.7.4.3 Charging Methods  

Since the LiFeO4 batteries cannot be fully charged by simply using constant current charging method, and only use CC method may 

have negative effect on battery state of health, the pre-charging state and constant voltage charging state are also applied here under 

USB power situation [26] [27]. 

 

Figure 47 Design for CC and CV charging 

Figure 77 Code for CC/CV Charging 
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In the charging FSM, we firstly pre-charge the batteries to around 5% of total capacity with small current for 50mA. Since charging 

with large current at low SoC of Li cells may damage its chemical structure, in this way we can effectively increase the life of battery 

thus improve State of Health. On the second stage, we charge cells by constant current until OCV 3.5 V, which is the maximum charging 

voltage for the battery. In this case, we can no longer charge the cell by large current as this brings the potential risk of damaging the 

cell. On the other hand, constant voltage charging is applied to fix the charging voltage at 3.5 V. As the potential difference between the 

inner part of battery and outer 3.5V applied becomes smaller, the current flow into the cell will become smaller. When the current is 

small enough e.g., 50mA, the charging process is considered to be completed. 

However, it is also suggested that tracing the sudden change point of polarized voltage of Li battery and decrease the charging current 

accordingly would be a better approach than constant voltage charging method, for which it takes into account for both charging 

efficiency and SoH [28].  

The voltage controller from Power Lab is used here for voltage control. The current controller is cascaded after it. The output from PID 

voltage controller becomes the input of current controller before passing through the saturation function. In this case, the voltage is 

regulated around voltage reference value, and the current is supplied according to the charging status of battery. 

4.7.4.4 State of Charge 

 The state of charge of batteries are measured by coulomb counting and voltage look up table methods [29] [30]. 

 

Voltage (mV) SoC (%) 

2500 2 

2900 5 

3100 10 

3200 15 

3230 20 

3250 25 

3280 30 

3300 40 

3310 50 

3320 60 

3330 70 

3340 80 

3350 90 

3360 100 

Table 6 Design for look-up table 

1. float integral(float current_measure, float current_previous){  
2.   float trapezoidal = (1.00/(2.00 * 3600.00)) * (current_measure + current_previous); //Use trapezoidal 

method for integration 
3.   return trapezoidal;} 
4. //Here below are in SLOW LOOP (1Hz) 
5. soc = soc + (integral(current_measure, current_previous))/(500); 
6. current_previous = current_measure; 

Figure 48 Code for Coulomb Counting 
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Figure 49 Plot for Coulomb counting with time             Figure 50  Plot for Coulomb counting with voltage  

  using CC and CV charging method                              using CC and CV charging method 

Since for state of charge measurement, we have the formula 𝑆𝑜𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑆𝑜𝐶𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 +
𝑛 ∫ 𝐼(𝑡) 𝑑𝑡

𝑄𝑡𝑜𝑡𝑎𝑙
, where n is coulomb efficiency and 

here approximated to be 1 [31] [32]. In the formula the current SoC is the sum of previous SoC and the increase in SoC, which is 

represented by increased amount of charge over the total charge of battery. We can integrate current here by trapezoidal method in 

Arduino, and the previous SoC value is read and write into SD card for each charging time. 

The SoC figure demonstrates the SoC increase with time linearly in CC mode, and its gradient decreases in CV mode as current decreases 

gradually in this mode. We can also observe that the OCV is fixed at 3.5V for above 90% SoC, which meets our expectation. 

A more complex approach for SoC estimation would be using Kalman Filter [33]. 

4.7.4.5 State of Health 

There are lots of factors influence the state of health of battery. The most significant one would be its total capacity available divides its 

nominal capacity. The batteries are designed to have some more capacity than labelled when they are newly manufactured, in case is 

around 580 mAh. However, as battery has been charged by multiple times, due to chemical reactions inside the battery, the actual 

capacity available will decrease. 

In addition, the number of charging and discharging cycles should also be noted. The battery is designed to have 1000 cycles. As number 

of cycles increases, the impedance of battery will also increase, in case the internal resistance of battery may also be the indication for 

state of health of battery. This can be measured by Ohm’s law using 𝑅𝑏(𝑆𝑂𝐶, 𝑇) =
𝑂𝐶𝑉(𝑆𝑂𝐶,𝑇)−𝑉𝑏𝑎𝑡(𝑆𝑂𝐶,𝑇)

𝐼𝑝𝑢𝑙𝑠𝑒
 [34]. 

Besides, the temperature of battery is also a significant factor for SoH. Under normal circumstances, the LiPO4 batteries we use should 

have temperature between 10 to 40 [35]. The bad weather on the Mars may heavily influence the life cycle of battery. 

4.7.5 Communication with other modules  

4.7.5.1 With Drive  
Since 5V is required for rover operation, the parallel balanced batteries will connect with drive SMPS in Buck mode through energy 

SMPS in boost mode. The current and voltage required are pre-calculated and discharges accordingly. However, since it is impossible 

to test the implementation, the discharging process is for reference only. The rover range estimation will also be based on comparing 

the data of current power consumption and current distance travelled to estimate remaining range available. 

4.7.5.2 With Control  
The discharging process are monitored by control according to the status of rover, whether the rover is at rest, operating with light off 

or fully operating. The entire charging and discharging process relevant information are sent to control through UART port, and this is 

then displayed at command side. 

4.7.6 Implementation on Charging and Discharging 
The charging for battery with PV Figure 78 Plot for Charging MPPT(Starting with Figure 78) and the remote battery discharging process 

(Starting with Figure 83) can be found in appendix 
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4.8 Inter-module communication (integration) 

4.8.1 ESP32-Drive Arduino UART 
The communication protocol is set to be UART because the Arduino Navy Nano has an embedded UART port, it is sufficient for 

transmitting the opcode and the Rover’s coordinates. The configuration of the UART is “SERIAL_8N1”, which has 1 start bit, 8 data 

bits, none parity bit and 1 stop bit. The baud rate is set to be 115200 bps as this is the default baud rate of ESP32, and also the limit of 

Serial monitor of the Arduino IDE. Theoretically it can be improved because the ESP32 UART port support up to 5Mbps, 

Baud rate selection  

 

Figure 51. ATmega4809 Data Sheet [36] 

The baud rate is determined by writing to the registers UBRRn[H:L], it can be described by the following equation,  

UBRRn[H: L] =
fOCS

16BAUD
− 1 

Given the clock frequency to be 16MHz, the maximum baud rate possible is 1 Mhz. 

 

Figure 52. ATmega4809 Data Sheet [36] 

Json Struct 

Json Format (Syntax) is a light weighted design, the “ArduinoJson” library has been used enforced this feature. By comparing to the 

official “Arduino_Json” libaray, the “ArduinoJson” is twice smaller in size, consume 10% less RAM and runs 10% faster [37] . The 

drive Arduino only sending/receiving data passively. Hence the commination interval is purely depends on ESP32, this enable the 

ESP32 to perform task prioritising. 

 

4.8.2 ESP32-Server communication 
Several application IP protocols were considered for communication between the ESP32 and the web server. HTML, MQTT and 

WebSockets were considered with example CC0-licenced code already available from Expressif [38]. However, it was decided that raw 

TCP sockets would suffice as they would still be able to still transmit information reliability with less overhead, provided error checks 

are performed. 
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5 Project Management 

5.1 Progress Checking 
Regular team meeting were held twice a week at the start of the project to keep track of progress and ensure everyone in the team was 

on track. Meetings were held in Microsoft Teams and offline communication was mainly done via WhatsApp. 

As this project involves quite a few people and several systems, it was important to be able to keep track of the number of tasks. A Gantt 

chart was utilised to ensure tasks were completed on schedule.  
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After each meeting, each member filled in a document describing what needed to be done before the next meeting. This was important 

to make sure everyone was on track. Initially, the goal was to create a working prototype of the Mars rover as soon as possible, which 

involved closely working with Integration throughout the project to work out how to communicate between the subsystems. The remote 

rover was fully working by two weeks before the deadline, which allowed us to build functionality incrementally rather than trying to 

integrate everything at the end.  

5.2 Testing Process  
Due the limitation of remote working, only one person of the team was able to have full access to the rover. Hence, local testing within 

each subsystem was prioritized over inter-module testing.  

In the Vision subsystem, compiling the Quartus project took a long time, so development/testing was sped up in several ways. Firstly, 

more modes or switch configurations were implemented to test multiple outputs at the same time e.g. different steps in the pipeline 

(visual testing). To test HSV range values, memory mapped registers were added (e.g. HSV bounds) to experimentally determine the 

right values using the NIOS II, so that the project could be built and ran quickly on Eclipse rather than having to recompile the entire 

Verilog project every time. Some algorithms were also tested on MATLAB beforehand to make sure the algorithm made sense before 

converting it into Verilog or C code for the actual project.  

To develop and test video streaming, the Test Pattern Generator II IP Block was used in place of the camera to generate a static test 

pattern. A simple python script was used to obtain image data via TCP and display them. This meant that the ESP32 and Verilog code 

could be developed independently and tested to ensure that images were correctly sent from the FPGA video pipeline to the ESP32 to 

the server via TCP, with minimal integration testing until the feature was ready to be integrated. 

In the Command subsystem client-side, React has its own local development server. The page will reload if there is any edit, avoiding 

restarting the server all the time. To test the server, a simple program is written to simulate TCP packets sending from the ESP32. This 

allows testing on server without ESP32 to happen. At the same time a C++ program was created to send dummy data by TCP to test 

sending JSON data. 

As only person responsible for integration has the hardware needed for testing, inter-module testing were done in Microsoft Teams call 

to allow person-in-charge explains the technical details.  

6 Evaluation 
Subsystem Evaluation 

Vision Functional: The vision module was able to successfully send coordinates of each of the five coloured ping pong 

balls through the message buffer, to be received by the ESP32. Several modules were created to ensure the correct 

ping pong balls were detected and to prevent false positive results, where the bounding box was detected even if that 

coloured ping pong ball was not in the frame.  

There were four switches used in the project to switch between modes to output and test code visually. One of these 

switch configurations could output the input image with bounding boxes, which helped determine how optimisations 

improved the performance of the detection. 

Reading and sending data from the NIOS II was optimised by using fopen, fwrite, and fread functions by opening a 

port to the UART core (uart_esp), which was much more reliable than stdin/stdout when testing with the FPGA. 

Although, this did mean that the small C library could not be used to minimise resource utilisation on the on-chip 

memory. This on-chip memory used the largest proportion of memory and M9K memory blocks, which was the 

limiting factor when trying to fit video streaming in the same project as the bounding box detection. The minimum 

memory size that allowed UART to work was 101600 bytes, which used 128 M9K blocks as seen in Figure 66. On-

chip memory resourcesFigure . 
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Non-functional: HSV ranges allowed for colour detection that was less sensitive to light compared to the basic 

detection. Adjusting HSV bounds through the web server allowed for rapid testing, although it still required some 

fine tuning to get colour detection to detect the boundary boxes. In the final video, the HSV ranges were adjusted, 

although it was done quickly, and it was getting darker in the room over time. If more time was spent adjusting these 

values, the boundary boxes would have performed even better. Thus, the subsystem performed well as long as the 

colour detection was tuned correctly, as the bounding box detection relied heavily on what pixels were detected. 

 

The DE-10 Lite always showed a rate of 60-61 fps on the hexadecimal display. The output image also did not have 

any glitches or timing issues due to a large critical path. This was achieved by pipelining the computation heavy 

algorithms, such as the RGB to HSV converter, which required multiplication and division. A clear output image 

was more important than any shift in the output pixels due to the result only being available several clock cycles 

afterwards due to pipelining). The display could have been shifted, but the inaccuracy of the distance calculation (as 

it was dependent solely on the size of the bounding box) had a much larger effect on avoiding/displaying the ping-

pong balls than any shift of the output pixels. Thus, time was spent improving the bounding box detection rather than 

fixing the small shift in output pixels. 

Control Functional: The ESP32 had met all functional requirements. The programming strategy of using FreeRTOS tasks 

and queues allowed data to be transmitted between subsystems. The ESP32 is able to successfully obtain bounding 

boxes from the FPGA and decide how to avoid obstacles.  

 

Non-functional: The ESP32 can send data with minimal delay, however the presence of Video Streaming had a 

sizeable impact on the delay.  

Video 

Streaming 

Functional: The rover can send colour images to the web server to be displayed, at a frame rate of about 0.5 FPS. 

 

Non-Functional: The whole video streaming process barely uses any CPU processing. The only time any CPU time 

is used is when the ESP32 sends out a video frame through TCP and when the server resaves the image as a modern 

32-bit bitmap for displaying. 

Command Functional: The webpage could receive status data from the rover and displays them with a nice user interface. It 

can also reads in user command and successfully sends to the rover. 

 

Non-Functional: The webpage has several subpages to display data more neatly. There is also a minimum delay 

sending user command to the rover. 

Drive Functional: Optical flow sensor are properly integrated with motor, although there still have some delay, it is 

acceptable for motion control. Position data have been sent correctly, so the map can be drawn accurately. Data can 

be read in the serial monitor and interact functionally with optical flow sensor and motor PCB. Position and angle 

have been controlled separately, based on the received instruction. 

 

Non-Functional: Delay in the control system is very fast, which is about 20ms delay, which is acceptable for 

controlling the drive system accurately. And the fluctuation in the voltage control is less, ensure the motor speed run 

constantly. The video quality is very high, thus the position sensing achieves the requirement Position and angle are 

controlled with 1cm and 5 degree error respectively without fluctuation, which is acceptable for avoiding obstacles 

and draw a accurate map.   

Power Functional: The Arduino and Battery Board can meet basic functional requirements. The battery status such as SoC 

and OCV can be constantly monitored. However, for more complex parts such as charging battery with CC/CV and 

using MPPT at the same time, or implementing coulomb counting for parallel balanced batteries will be hard 

 

Non-Functional: The battery charging process through PV can be done by connecting both batteries and PV panels 

in parallel. However, the current supplied by PV is very small. Although theoretically it is possible to test serial PV 

with serial battery balance connection, while in rough test the PV is not supplying ideal current, and due to the battery 

halt we don’t have any further chance to test it. 

Integration Functional: The UART ports between modules are working, able to perform remote control, exploration, map 

drawing as well as video streaming. 

 

Non-functional: The energy supply of Rover come from the 5V cable supply instead of battery/PV panel. The 

physical movement of the Rover is limited by the wires, hence the wireless communication strength of the ESP32 

hasn’t been used up.  

The vision hardware resource figures are in Appendix Section 10.1.2.  
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7 Conclusion 

7.1 Future developments 

7.1.1 Vision 
The orientation of the rover was calculated using the direction that the x and y coordinates were moving. This meant that the orientation 

could not be measured accurately when just turning (as the optical sensor does not change much). The accelerometer on the DE-10 Lite 

could possibly have been used and the orientation could have been sent to the ESP32 to have a more accurate measure of the direction 

the rover is turning. The biggest limitation of boundary box detection was the requirement to adjust HSV ranges according to different 

lighting conditions to perform well. Another algorithm could be developed to dynamically adjust the ranges by detecting the lighting 

conditions automatically with the camera. Storing the entire frame of the image could help detect this. Edge detection could also be used 

to detect the ball’s position more accurately using an algorithm like the Hough transform [39] to detect circles. This method would be 

plausible if more memory resources were available. 

The orientation of the rover was calculated using the direction that the x and y coordinates were moving. This meant that the 

orientation could not be measured accurately when just turning (as the optical sensor does not change much). The accelerometer on 

the DE-10 Lite could possibly have been used and the orientation could have been sent to the ESP32 to have a more accurate measure 

of the direction the rover is turning. The biggest limitation of boundary box detection was the requirement to adjust HSV ranges 

according to different lighting conditions to perform well. Another algorithm could be developed to dynamically adjust the ranges by 

detecting the lighting conditions automatically with the camera. Storing the entire frame of the image could help detect this. Edge 

detection could also be used to detect the ball’s position more accurately using an algorithm like the Hough transform [39] to detect 

circles. This method would be plausible if more memory resources were available. 

7.1.2 Control 
Although possible to disable video streaming at compile time, an improvement would be to disable related FreeRTOS tasks at runtime 

(or change their interval), which would allow for better latency with movement control when needed. An extension to the exploration 

mode would be to implement specific mapping algorithms for the rover to map the area. 

7.1.3 Command 
The current system does not have any security methods implemented. To improve security of this system, encryption could be done 

before sending out TCP packets. Another method is using HTTPS with SSL instead of HTTP as the communication protocol between 

server and web client. Authentication could also be implemented on the web page, where only users could access certain pages and 

send out user commands. 

7.1.4 Power 
The current equipment can meet the basic requirement. However, due to lack of reliable sensors, such as current measure sensor on 

battery board, extremely slow discharging circuit, not accurate enough voltage measurement port on board and not efficient enough 

PV panel, it is hard to implement more complicated balance, monitoring or charging methods. 

7.1.5 Drive 
The motors cause some energy loss, when one motor is turning, it will introduce a voltage that apply on the motor which stop the it 

moving in the same direction. The motors also can’t stop immediately when it received the stop instruction due to momentum, such 

delay has led to in accuracy in the exploration mode. To improve this, a reverse voltage can be applied on the motors to introduce a 

IM torque oppose the direction of motion. 

 

8 Intellectual Property (IP) Essay 
When designing a complex system, it is important to check whether any idea being worked on has already been filed as part of an IP 

patent, as the patent owner can legally sue for any infringement. However, in the case of Altera’s IP in Quartus, Altera will, on behalf 

of the license holder, defend against and pay for any damages relating to Altera’s IP infringing on other patents [40]. Therefore, an 

advantage of licensing IP in this case is the design team does not have to worry about infringement over certain parts of the design. 

In case any IP is already being used, it is important to check for the terms of use. For example, the ‘IP Megafunctions’ in Quartus (for 

example, arithmetic multiply and comparison blocks) can be freely used, altered and distributed provided they are only used to “program 

devices”, without any license needed [40]. Conversely, the ‘IP MegaCore’ blocks (Nios II and DSP blocks) can only be used for free 

under the ‘OpenCore Plus Evaluation’ license with where the FPGA is tethered to the computer. A production rover using Altera IP 

Cores with a full license would still need an Altera FPGA. 
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We believe the closest patentable idea is the Verilog module that converts the clocked video pixel output into I2S signals. I2S was 

originally designed to transmit sound rather than video. I2S has been used to output video from a microcontroller [41], although using 

it to read in video frames appears to be more novel. The ESP32 already has a camera driver using I2S to take in images, though it 

connects directly to a camera with 8 data pins. The module developed in this project is slightly different as it uses less pins and is set to 

obtain smaller 8-bit colour images directly from FPGA fabric. 

9 References 
 

[1]  E. Stott, "GitHub EEE2Rover," 6 May 2021. [Online]. Available: https://github.com/edstott/EEE2Rover. [Accessed 11 May 

2021]. 

[2]  B. Wicht, "Deep Learning feature Extraction for Image Processing," ResearchGate, Fribourg, 2018. 

[3]  J. Xu, J. Geng, X. Yan, H. Wang and H. Xia, "Implementing real time image processing algorithm on FPGA," in Twelfth 

International Conference on Digital Image Processing, Osaka, Japan, 2020.  

[4]  S. H. Ahn, "Convolution," 2018. [Online]. Available: http://www.songho.ca/dsp/convolution/convolution.html. [Accessed 26 

May 2021]. 

[5]  Chinmay, "The IE Blog," 19 January 2020. [Online]. Available: https://ie.nitk.ac.in/blog/2020/01/19/algorithms-for-adjusting-

brightness-and-contrast-of-an-image/. [Accessed 15 May 2021]. 

[6]  J. H. Bear, "Lifewire," 11 November 2019. [Online]. Available: https://www.lifewire.com/what-is-hsv-in-design-1078068. 

[Accessed 6 June 2020]. 

[7]  M. Hanumantharaju, G. Vishalakshi, S. Halvi and S. Satish, "A Novel FPGA Based Reconfigurable Architecture for Image 

Color Space Conversion," in International Conference On Recent trends in Computing, Communication and Information 

Technologies, Vellore, 2011.  

[8]  Altera Corporation, "Avalon-ST Serial Peripheral Interface Core," November 2009. [Online]. Available: 

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/qts_qii55009.pdf. [Accessed 6 June 

2021]. 

[9]  Espressif Systems, "I2S - ESP32 --- ESP-IDF Programming Guide," 2021. [Online]. Available: 

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/i2s.html. [Accessed 29 May 2021]. 

[10]  Expressif Systems, "I2S Slave mode with external MCLK - ESP32 Forum," 26 June 2020. [Online]. Available: 

https://www.esp32.com/viewtopic.php?t=16290. [Accessed 29 May 2021]. 

[11]  Expressif Systems, "ESP32 Technical Reference Manual," March 2021. [Online]. Available: 

https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf. [Accessed 29 May 

2021]. 

[12]  Expressif Systems, "I2S 24bit Slave - ESP32 Forum," 5 August 2018. [Online]. Available: 

https://www.esp32.com/viewtopic.php?t=6650. [Accessed 29 May 2021]. 

[13]  Expressif Systems, "Store I2S bytes in different order - ESP32 Forum," 29 January 2019. [Online]. Available: 

https://esp32.com/viewtopic.php?t=9028. [Accessed 30 May 2021]. 

[14]  Altera Corporation, "Video and Image Processing Suite User Guide," 31 October 2016. [Online]. Available: 

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-vip-16.1.pdf. [Accessed 25 May 

2021]. 



   

 

39 

 

[15]  fourcc.org, "CLJR yuv pixel format," [Online]. Available: https://www.fourcc.org/pixel-format/yuv-cljr/. [Accessed 29 May 

2021]. 

[16]  Microsoft Corporation, "Bitmap Header Types - Microsoft Docs," 31 May 2018. [Online]. Available: 

https://docs.microsoft.com/en-us/windows/win32/gdi/bitmap-header-types. [Accessed 30 May 2021]. 

[17]  R. Barry, Mastering the FreeRTOS™ Real Time Kernel, Real Time Engineers Ltd, 2016.  

[18]  "React Router," React Training, 2021. [Online]. Available: http://reactrouter.com. [Accessed 2021]. 

[19]  "React," Facebook, 2021. [Online]. Available: https://reactjs.org/docs/hooks-state.html#gatsby-focus-wrapper. [Accessed 2021]. 

[20]  "Current Weather API," OpenWeather, 2021. [Online]. Available: https://openweathermap.org/current. [Accessed 2021]. 

[21]  "int - Arduino Reference," Arduino, [Online]. Available: https://www.arduino.cc/reference/en/language/variables/data-

types/int/. [Accessed 21 5 2021]. 

[22]  "long - Arduino Reference," Arduino, [Online]. Available: https://www.arduino.cc/reference/en/language/variables/data-

types/long/. [Accessed 20 5 2021]. 

[23]  A. Smets, "Maximum Power Point Tracking," Delft University of Technology, [Online]. Available: 

https://www.youtube.com/watch?v=5Us5mM87PU8. 

[24]  S. Motahhir, "Arduino based MPPT Controller," [Online]. Available: https://create.arduino.cc/projecthub/motahhir/arduino-

based-mppt-controller-0560db. 

[25]  T. U. o. Munich, "Discharge and Charge Process of a Conventional Lithium-Ion Battery Cell," [Online]. Available: 

https://www.youtube.com/watch?v=p8ecZ5oK7Fc. 

[26]  E. Osmanbasic, "Battery Management Systems–Part 3: Battery Charging Methods," 21 2 2020. [Online]. Available: 

https://www.engineering.com/story/battery-management-systemspart-3-battery-charging-methods. 

[27]  P. Technology, "How to charge Lithium Iron Phosphate Rechargeable Lithium Ion Batteries," [Online]. Available: 

https://www.powerstream.com/LLLF.htm. 

[28]  B. J. University, "Improved Li Battery CC-CV Charging Method". China Patent CN 101814640 B, 24 10 2012. 

[29]  S. S. Madani, E. Schaltz and S. K. Kær, "An Electrical Equivalent Circuit Model of a LithiumTitanate Oxide Battery," batteries, 

pp. 3-5, 13 3 2019.  

[30]  M. Jain and D. Martin, "State of Charge Estimation Problem," The University of Texas at Dallas, [Online]. Available: 

https://labs.utdallas.edu/essl/projects/state-of-charge-estimation-problem/. 

[31]  I. Baccouche, S. Jemmali, A. Mlayah, B. Manai and N. E. B. Amara, "Implementation of an Improved Coulomb-Counting 

Algorithm Based on a Piecewise SOC-OCV Relationship for SOC Estimation of Li-Ion Battery," INTERNATIONAL JOURNAL 

of RENEWABLE ENERGY RESEARCH, pp. 2-3.  

[32]  W.-Y. Chang, "The State of Charge Estimating Methods for Battery: A Review," pp. 2-4.  

[33]  Z. Yu, R. Huai and L. Xiao, "State-of-Charge Estimation for Lithium-Ion Batteries Using," energies, pp. 1-20, 30 7 2015.  

[34]  N. Noura, L. Boulon and S. Jemeï, "A Review of Battery State of Health Estimation," World Electronic Vehicle Journal, pp. 3-

4, 16 10 2020.  

[35]  J. Sun, P. Yang, R. Lu, G. Wei and C. Zhu, "LiFePO4 optimal operation temperature range analysis for EV/HEV Analysis for 

EV/HEV," pp. 1-2.  



   

 

40 

 

[36]  MICROCHIP, " ATmega4808/4809 Data Sheet," [Online]. Available: 

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega4808-4809-Data-Sheet-DS40002173A.pdf. 

[37]  ArduinoJson, "ArduinoJson," [Online]. Available: https://arduinojson.org/?utm_source=meta&utm_medium=library.properties. 

[38]  Expressif Systems, "Protocols Examples - ESP-IDF Github Repository," [Online]. Available: https://github.com/espressif/esp-

idf/tree/master/examples/protocols. [Accessed 15 June 2021]. 

[39]  H. Rhody, "Lecture 10: Hough Circle Transform," Rochester Institute of Technology, Rochester, 2005. 

[40]  Altera Corporation, "QUARTUS(R) PRIME LICENSE AGREEMENT VERSION 16.1," 2016. [Online]. Available: 

https://download.altera.com/akdlm/software/acdsinst/16.1/196/licenses/license.txt. [Accessed 7 June 2021]. 

[41]  Hackaday, "Software Defined Television on an ESP32," [Online]. Available: https://hackaday.com/2018/02/22/software-

defined-television-on-an-esp32/. [Accessed 115 June 2021]. 

[42]  Philips Semiconductors, "I2S Bus Specification," Febraury 1986. [Online]. Available: 

https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf. [Accessed 25 May 2021]. 

[43]  R. C. Niemietz., "MSX2 Sceen Palette," 1 February 2008. [Online]. Available: 

https://upload.wikimedia.org/wikipedia/commons/3/30/MSX2_Screen8_palette.png. [Accessed 5 May 2021]. 

[44]  OpenWeather, "https://openweathermap.org/current," [Online]. [Accessed 2021]. 

 

 

 

  



   

 

41 

 

10 Appendices 

10.1 Vision 

10.1.1 Image processing 

 

Figure 53. Streaming video pipeline diagram from Edward Stott’s GitHub [1] 

 

 

Figure 54. Demonstration of 3x3 convolution [4] 

 

Figure 55. Glitches on image due to large critical path 
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Figure 56. Row FIFO Simulation 

 

Figure 57. 3x3 Gaussian blur equation [2] 

 

Figure 58. 3x3 Window module logic (WINDOW_3x3.v) 
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Figure 59. Contrast function code 

 

 

Figure 60. RGB to HSV Hardware Architecture [7] 

 

Figure 61. Differentiating red and pink pixels code 
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Figure 62. Bounding box detection for five ping pong balls 

10.1.2 Hardware resources 

10.1.2.1 Boundary box Quartus project 

 

Figure 63. Compilation summary for bounding box project 
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Figure 64. Resource usage summary for bounding box project 

 

Figure 65. Resource utilisation by entity for EEE_IMGPROC in boundary box project 
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Figure 66. On-chip memory resources 

10.1.2.2 Video stream Quartus project 

 

Figure 67. Compilation summary for video streaming project 
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Figure 68. Resource usage summary for video streaming project 

 

Figure 69. Resource utilisation by entity for video streaming project 
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Figure 70. QSYS project video streaming IP connections 
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10.2 Video Stream 
 

 

Figure 71. Color bar test pattern produced by Test Pattern Generator II IP Core [14]. 

 

Figure 72. Bitmap image obtained from ESP32 
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Figure 73. I2S Protocol timing and configurations [42]. Note that the original specification is shown where a new data word is sent on the clock 

cycle following the WS transition, compared to on the same clock cycle which is used in this project. 

 

 

Figure 74. The 3-3-2-bit RGB color palette [43]. 
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Figure 75. Verilog Code for I2S transmission 
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10.3 Power 

10.3.1 Balance 
case 2:{ //Measurement Stage 

  current_ref = 0; //Stop charging during measurement 

  if (rest_timer_rest < 30) { // Rest battery to measure OCV 

    next_state = 2; //Stay here until 30s 

    rest_timer_rest ++;}  

  else{ //Actual OCV measure 

    digitalWrite(5, true); //Turn on relay on battery 1 

    digitalWrite(4, true); //Turn on relay on battery 2 

    if(V_measure_1 < V_max){ 

      digitalWrite(5, false); //Turn off relay if below 3.4V 

      next_state = 1;} //Keep charging 

    else{ 

      digitalWrite(5, true); //Keep relay on if fully charged 

      Serial.println("Battery 1 finished!");} 

    if(V_measure_2 < V_max){ 

      digitalWrite(4, false); 

      next_state = 1;} 

    else{ 

      digitalWrite(4, true); 

      Serial.println("Battery 2 finished!");} 

  

  if(V_measure_1 >= V_max || V_measure_2 >= V_max){ 

//Stop charging for all batteries if anyone fully charged 

    next_state = 3;}  

  rest_timer_rest = 0;} 

 Figure 76 Code for Parallel Balance 

 

10.3.2 Charging Methods 
//Here below are in FAST LOOP (1kHZ), PID parameters are used as the same from Power Lab 

if (voltage_ref == 0){ 

    error_amps = (current_ref - current_measure) / 1000; 

    pwm_out = pidi(error_amps); 

    pwm_out = saturation(pwm_out, 0.99, 0.01); 

    analogWrite(6, (int)(255 - pwm_out * 255));} 

else{//PID for voltage controller cascaded with current controller 

    error_volts = voltage_ref - V_Bat; 

    current_volts = pidv(error_volts); 
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current_volts = saturation(current_volts, 0.25, 0); 

//Voltage controller output as current controller input 

    error_amps = current_volts - (current_measure/(1000.0)); 

    pwm_out = pidi(error_amps); 

    pwm_out = saturation(pwm_out, 0.99, 0.01); 

    analogWrite(6, (int)(255 - pwm_out * 255));} 

//Here below are in SLOW LOOP (1Hz)    

case 2:{ //Constant voltage (CV) charging state (3.6V) 

    voltage_ref = 3500; 

    if (current > 50){//Keep charging for current above 50mA 

        next_state = 2; 

        digitalWrite(8,true);} //LED on 

    else{ 

        next_state = 3; 

        digitalWrite(8,false);} 

if(input_switch == 0){  

        next_state = 0; 

        digitalWrite(8,false);} 

    break;} 

 Figure 77 Code for CC/CV Charging 

10.3.3 Charging 

 

Figure 78 Plot for Charging MPPT 
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Figure 79 Plot for Battery 1 SoC 

 

Figure 80 Plot for Battery 1 SoC 
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Figure 81 Plot for Battery 2 SoC 

 

Figure 82 Plot for Battery 2 SoC 
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10.3.4 Discharging 

 

Figure 83 Plot for Battery 1 SoC 

 

Figure 84 Plot for Battery 1 SoC 



   

 

57 

 

 

Figure 85 Plot for Battery 2 SoC 

 

Figure 86 Plot for Battery 2 SoC 
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10.4 Drive 

10.4.1 Arduino nano codes for communication with optical flow sensor 

 

Figure 88 optical flow sensor communication part1 

 

 

Figure 89 optical flow sensor communication part2 

Figure 87 codes of forward moving 
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10.4.2 Arduino nano codes for moving forward method 

 

 

 

 

Figure 90 codes of forward moving 
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10.4.3 Arduino nano codes for angle control 

 

Figure 91 codes of angle control 


