Imperial College London

Improving Diversity of Diffusion Models using Particle Methods

Alexander Pondaven

27th June 2023

Supervisor Dr. Yingzhen Li

PhD Advisor Harrison Zhu Second marker Prof. Ruth Misener

Are diffusion models diverse?

Novel contributions

- Introduce repulsion methods
 - Increased spread of images in controlled fashion
- Diversity metrics
 - General diversity
 - Location diversity
 - Style diversity
- Evaluate repulsion methods on each metric and show improved spread

Noise levels

• Construct marginals

Noise levels

• Construct marginals

Sampling from p(x)

 $\sigma = 0$

Diagrams by Song (2021)

Stable Diffusion 2

Stable Diffusion 2

Repulsion

Particle repulsion

Particle repulsion

Similarity repulsion

Kernel gradient repulsion term

Kernel gradient repulsion term

$$\mathcal{R}(z_t^{(i)}, z_t^{(j)}) =
abla_{z_t^{(i)}} k(z_t^{(i)}, z_t^{(j)})$$

Repulsive step

- Add repulsive forces for N particles
- Repulsive force lpha

Denoising step: Score

$$z_{t+1}^{(i)} = z_t^{(i)} + \epsilon_t
abla_{z_t^{(i)}} \log p(z_t^{(i)})$$

Denoising step: Score + Repulsion

$$z_{t+1}^{(i)} = z_t^{(i)} + \epsilon_t [
abla_{z_t^{(i)}} \log p(z_t^{(i)}) - rac{lpha}{N} \sum_{j=1}^N
abla_{z_t^{(i)}} k(z_t^{(i)}, z_t^{(j)})]$$

Latent repulsion

4000

Latent repulsion

- High dimensionality issue
- Unsuitable similarity measure

Feature Repulsive steps

Latent repulsive step
$$z_{t+1}^{(i)} = z_t^{(i)} + \epsilon_t [
abla_{z_t^{(i)}} \log p(z_t^{(i)}) - rac{lpha}{N} \sum_{j=1}^N
abla_{z_t^{(i)}} k(z_t^{(i)}, z_t^{(j)})]$$

Embedded repulsive step
$$z_{t+1}^{(i)} = z_t^{(i)} + \epsilon_t [
abla_{z_t^{(i)}} \log p(z_t^{(i)}) - rac{lpha}{N} \sum_{j=1}^N
abla_{z_t^{(i)}} \phi_t^{(i)}
abla_{\phi_t^{(i)}} k(\phi_t^{(i)}, \phi_t^{(i)})$$

Channel average repulsion

Average of each latent channel

64x64

Channel average repulsion

Average of each latent channel

64x64

Rule of thirds repulsion

Rule of thirds repulsion

Convolutional Neural Network (CNN)

- Image property extractor
- Randomly initialise weights

Randomly initialised

Style classifier trained on latents

• Train CNN to classify artist from latents

Feature space

Style classifier trained on latents

• Rule of thirds operation on style classifier embedding

Rule of thirds on feature space

Diversity metrics

Maximum diversity distance

Maximum diversity distance

Maximum diversity distance

- Compare image embeddings with FID
 - Default FID embedding

- Compare image embeddings with FID
 - Default FID embedding

Model diagram:

- Compare image embeddings with FID
 - Default FID embedding
 - Introduce novel location and style embeddings

Model diagram:

- Compare image embeddings with FID
 - Default FID embedding
 - Introduce novel **location** and **style** embeddings

- Compare image embeddings with FID
 - Default FID embedding
 - Introduce novel **location** and **style** embeddings

Evaluation results

Results

- Lower metrics closer to max diversity
 - \rightarrow More diverse

FID metrics on each feature space

Conclusion

- Improved efficiency and control over exploration of image space
- Novel diversity metrics to separate location and style

Conclusion

- Improved efficiency and control over exploration of image space
- Novel diversity metrics to separate location and style

Applications

- Flexible sampling of pre-trained models
- Reduce redundancy e.g. recommendation systems

References

- **Stable Diffusion 2 Paper:** Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj¨orn Ommer. High-resolution image synthesis with latent diffusion models, 2021. URL <u>https://arxiv.org/abs/2112.10752</u>.
- Stable Diffusion 2 Hugging Face API, Jun 2022. URL <u>https://huggingface.co/stabilityai/stable-diffusion-2</u>. [Accessed 1st June 2023].
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
- Yang Song. Generative modeling by estimating gradients of the data distribution, May 2021. URL <u>https://yang-song.net/blog/2021/score/</u>.
- JalFaizy Shaikh. Deep learning in the trenches: Understanding inception network from scratch, May 2020. URL
 <u>https://www.analyticsvidhya.com/blog/2018/10/understanding-inception-network-from-scratch/</u>. [Accessed 16th June 2023].